Lecture 1 - Jet tagging with neural networks#

A first look at training deep neural networks to classify jets in proton-proton collisions.

Learning objectives#

  • Understand what jet tagging is and how to frame it as a machine learning task

  • Understand the main steps needed to train and evaluate a jet tagger

  • Learn how to download and process data with the 🤗 Datasets library

  • Gain an introduction to the fastai library and how to push models to the Hugging Face Hub

References#

The task and data#

For the first few lectures, we’ll be analysing the Top Quark Tagging dataset, which is a famous benchmark that’s used to compare the performance of jet classification algorithms. The dataset consists of around 2 million Monte Carlo simulated events in proton-proton collisions that have been clustered into jets.

Framed as a supervised machine learning task, the goal is to train a model that can classify each jet as either a top-quark signal or quark-gluon background.

_images/jet-tagging.png

Fig. 2 Figure reference: Particle Transformer for Jet Tagging#

Setup#

# Uncomment and run this cell if using Colab, Kaggle etc
# %pip install fastai==2.6.0 datasets git+https://github.com/huggingface/huggingface_hub
# Check we have the correct fastai version
import fastai

assert fastai.__version__ == "2.6.0"

Import libraries#

from datasets import load_dataset
from fastai.tabular.all import *
from huggingface_hub import from_pretrained_fastai, notebook_login, push_to_hub_fastai
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, auc, roc_auc_score, roc_curve
from sklearn.model_selection import train_test_split
import datasets

# Suppress logs
datasets.logging.set_verbosity_error()

Getting the data#

We will use the 🤗 Datasets library to download and process the datasets that we’ll encounter in this course. 🤗 Datasets provides smart caching and allows you to process larger-than-RAM datasets by exploiting a technique called memory-mapping that provides a mapping between RAM and filesystem storage.

To download the Top Quark Tagging dataset from the Hugging Face Hub, we can use the load_dataset() function:

top_tagging_ds = load_dataset("dl4phys/top_tagging")

If we look inside our top_tagging_ds object

top_tagging_ds
DatasetDict({
    train: Dataset({
        features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
        num_rows: 1211000
    })
    test: Dataset({
        features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
        num_rows: 404000
    })
    validation: Dataset({
        features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
        num_rows: 403000
    })
})

we see it is similar to a Python dictionary, with each key corresponding to a different split. And we can use the usual dictionary syntax to access an individual split:

top_tagging_ds["train"]
Dataset({
    features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
    num_rows: 1211000
})

The Dataset object is one of the core data structures in 🤗 Datasets and behaves like an ordinary Python list, so we can query its length:

len(top_tagging_ds["train"])
1211000

or access a single element by its index:

top_tagging_ds["train"][0]
{'E_0': 474.0711364746094,
 'PX_0': -250.34703063964844,
 'PY_0': -223.65196228027344,
 'PZ_0': -334.73809814453125,
 'E_1': 103.23623657226562,
 'PX_1': -48.8662223815918,
 'PY_1': -56.790775299072266,
 'PZ_1': -71.0254898071289,
 'E_2': 105.25556945800781,
 'PX_2': -55.415000915527344,
 'PY_2': -49.96888732910156,
 'PZ_2': -74.23626708984375,
 'E_3': 40.17677688598633,
 'PX_3': -21.760696411132812,
 'PY_3': -18.71761131286621,
 'PZ_3': -28.112215042114258,
 'E_4': 22.4285831451416,
 'PX_4': -11.835756301879883,
 'PY_4': -10.374107360839844,
 'PZ_4': -15.979177474975586,
 'E_5': 20.334388732910156,
 'PX_5': -10.950518608093262,
 'PY_5': -9.545439720153809,
 'PZ_5': -14.228776931762695,
 'E_6': 19.030899047851562,
 'PX_6': -10.243264198303223,
 'PY_6': -9.004837036132812,
 'PZ_6': -13.272662162780762,
 'E_7': 13.460596084594727,
 'PX_7': -7.3433637619018555,
 'PY_7': -6.359743595123291,
 'PZ_7': -9.317526817321777,
 'E_8': 11.226107597351074,
 'PX_8': -5.981515884399414,
 'PY_8': -5.456268787384033,
 'PZ_8': -7.776637554168701,
 'E_9': 10.445060729980469,
 'PX_9': -5.460624694824219,
 'PY_9': -4.854524612426758,
 'PZ_9': -7.464211463928223,
 'E_10': 9.077269554138184,
 'PX_10': -5.811364650726318,
 'PY_10': -3.4854695796966553,
 'PZ_10': -6.039566993713379,
 'E_11': 9.056221008300781,
 'PX_11': -4.758406162261963,
 'PY_11': -4.0972113609313965,
 'PZ_11': -6.525762557983398,
 'E_12': 6.96318244934082,
 'PX_12': -3.490816593170166,
 'PY_12': -3.0960206985473633,
 'PZ_12': -5.168632984161377,
 'E_13': 5.772968769073486,
 'PX_13': -2.934152364730835,
 'PY_13': -2.7418923377990723,
 'PZ_13': -4.147281646728516,
 'E_14': 3.760998249053955,
 'PX_14': -2.1263434886932373,
 'PY_14': -1.7262251377105713,
 'PZ_14': -2.5775797367095947,
 'E_15': 2.9336676597595215,
 'PX_15': -1.5918165445327759,
 'PY_15': -1.277614951133728,
 'PZ_15': -2.107184410095215,
 'E_16': 2.729625940322876,
 'PX_16': -1.4158698320388794,
 'PY_16': -1.217659831047058,
 'PZ_16': -1.9908478260040283,
 'E_17': 2.7179172039031982,
 'PX_17': -1.3310680389404297,
 'PY_17': -1.0936245918273926,
 'PZ_17': -2.102217197418213,
 'E_18': 2.301811933517456,
 'PX_18': -1.1343910694122314,
 'PY_18': -1.1675245761871338,
 'PZ_18': -1.6273847818374634,
 'E_19': 1.5100955963134766,
 'PX_19': -1.0334879159927368,
 'PY_19': -0.7483676671981812,
 'PZ_19': -0.8076121807098389,
 'E_20': 1.340166687965393,
 'PX_20': -0.8890589475631714,
 'PY_20': -0.7178719639778137,
 'PZ_20': -0.700200617313385,
 'E_21': 1.0327688455581665,
 'PX_21': -0.11786821484565735,
 'PY_21': -0.49550384283065796,
 'PZ_21': -0.8984400629997253,
 'E_22': 0.4266541004180908,
 'PX_22': -0.2976595461368561,
 'PY_22': -0.10618320107460022,
 'PZ_22': -0.2866315543651581,
 'E_23': 0.0,
 'PX_23': 0.0,
 'PY_23': 0.0,
 'PZ_23': 0.0,
 'E_24': 0.0,
 'PX_24': 0.0,
 'PY_24': 0.0,
 'PZ_24': 0.0,
 'E_25': 0.0,
 'PX_25': 0.0,
 'PY_25': 0.0,
 'PZ_25': 0.0,
 'E_26': 0.0,
 'PX_26': 0.0,
 'PY_26': 0.0,
 'PZ_26': 0.0,
 'E_27': 0.0,
 'PX_27': 0.0,
 'PY_27': 0.0,
 'PZ_27': 0.0,
 'E_28': 0.0,
 'PX_28': 0.0,
 'PY_28': 0.0,
 'PZ_28': 0.0,
 'E_29': 0.0,
 'PX_29': 0.0,
 'PY_29': 0.0,
 'PZ_29': 0.0,
 'E_30': 0.0,
 'PX_30': 0.0,
 'PY_30': 0.0,
 'PZ_30': 0.0,
 'E_31': 0.0,
 'PX_31': 0.0,
 'PY_31': 0.0,
 'PZ_31': 0.0,
 'E_32': 0.0,
 'PX_32': 0.0,
 'PY_32': 0.0,
 'PZ_32': 0.0,
 'E_33': 0.0,
 'PX_33': 0.0,
 'PY_33': 0.0,
 'PZ_33': 0.0,
 'E_34': 0.0,
 'PX_34': 0.0,
 'PY_34': 0.0,
 'PZ_34': 0.0,
 'E_35': 0.0,
 'PX_35': 0.0,
 'PY_35': 0.0,
 'PZ_35': 0.0,
 'E_36': 0.0,
 'PX_36': 0.0,
 'PY_36': 0.0,
 'PZ_36': 0.0,
 'E_37': 0.0,
 'PX_37': 0.0,
 'PY_37': 0.0,
 'PZ_37': 0.0,
 'E_38': 0.0,
 'PX_38': 0.0,
 'PY_38': 0.0,
 'PZ_38': 0.0,
 'E_39': 0.0,
 'PX_39': 0.0,
 'PY_39': 0.0,
 'PZ_39': 0.0,
 'E_40': 0.0,
 'PX_40': 0.0,
 'PY_40': 0.0,
 'PZ_40': 0.0,
 'E_41': 0.0,
 'PX_41': 0.0,
 'PY_41': 0.0,
 'PZ_41': 0.0,
 'E_42': 0.0,
 'PX_42': 0.0,
 'PY_42': 0.0,
 'PZ_42': 0.0,
 'E_43': 0.0,
 'PX_43': 0.0,
 'PY_43': 0.0,
 'PZ_43': 0.0,
 'E_44': 0.0,
 'PX_44': 0.0,
 'PY_44': 0.0,
 'PZ_44': 0.0,
 'E_45': 0.0,
 'PX_45': 0.0,
 'PY_45': 0.0,
 'PZ_45': 0.0,
 'E_46': 0.0,
 'PX_46': 0.0,
 'PY_46': 0.0,
 'PZ_46': 0.0,
 'E_47': 0.0,
 'PX_47': 0.0,
 'PY_47': 0.0,
 'PZ_47': 0.0,
 'E_48': 0.0,
 'PX_48': 0.0,
 'PY_48': 0.0,
 'PZ_48': 0.0,
 'E_49': 0.0,
 'PX_49': 0.0,
 'PY_49': 0.0,
 'PZ_49': 0.0,
 'E_50': 0.0,
 'PX_50': 0.0,
 'PY_50': 0.0,
 'PZ_50': 0.0,
 'E_51': 0.0,
 'PX_51': 0.0,
 'PY_51': 0.0,
 'PZ_51': 0.0,
 'E_52': 0.0,
 'PX_52': 0.0,
 'PY_52': 0.0,
 'PZ_52': 0.0,
 'E_53': 0.0,
 'PX_53': 0.0,
 'PY_53': 0.0,
 'PZ_53': 0.0,
 'E_54': 0.0,
 'PX_54': 0.0,
 'PY_54': 0.0,
 'PZ_54': 0.0,
 'E_55': 0.0,
 'PX_55': 0.0,
 'PY_55': 0.0,
 'PZ_55': 0.0,
 'E_56': 0.0,
 'PX_56': 0.0,
 'PY_56': 0.0,
 'PZ_56': 0.0,
 'E_57': 0.0,
 'PX_57': 0.0,
 'PY_57': 0.0,
 'PZ_57': 0.0,
 'E_58': 0.0,
 'PX_58': 0.0,
 'PY_58': 0.0,
 'PZ_58': 0.0,
 'E_59': 0.0,
 'PX_59': 0.0,
 'PY_59': 0.0,
 'PZ_59': 0.0,
 'E_60': 0.0,
 'PX_60': 0.0,
 'PY_60': 0.0,
 'PZ_60': 0.0,
 'E_61': 0.0,
 'PX_61': 0.0,
 'PY_61': 0.0,
 'PZ_61': 0.0,
 'E_62': 0.0,
 'PX_62': 0.0,
 'PY_62': 0.0,
 'PZ_62': 0.0,
 'E_63': 0.0,
 'PX_63': 0.0,
 'PY_63': 0.0,
 'PZ_63': 0.0,
 'E_64': 0.0,
 'PX_64': 0.0,
 'PY_64': 0.0,
 'PZ_64': 0.0,
 'E_65': 0.0,
 'PX_65': 0.0,
 'PY_65': 0.0,
 'PZ_65': 0.0,
 'E_66': 0.0,
 'PX_66': 0.0,
 'PY_66': 0.0,
 'PZ_66': 0.0,
 'E_67': 0.0,
 'PX_67': 0.0,
 'PY_67': 0.0,
 'PZ_67': 0.0,
 'E_68': 0.0,
 'PX_68': 0.0,
 'PY_68': 0.0,
 'PZ_68': 0.0,
 'E_69': 0.0,
 'PX_69': 0.0,
 'PY_69': 0.0,
 'PZ_69': 0.0,
 'E_70': 0.0,
 'PX_70': 0.0,
 'PY_70': 0.0,
 'PZ_70': 0.0,
 'E_71': 0.0,
 'PX_71': 0.0,
 'PY_71': 0.0,
 'PZ_71': 0.0,
 'E_72': 0.0,
 'PX_72': 0.0,
 'PY_72': 0.0,
 'PZ_72': 0.0,
 'E_73': 0.0,
 'PX_73': 0.0,
 'PY_73': 0.0,
 'PZ_73': 0.0,
 'E_74': 0.0,
 'PX_74': 0.0,
 'PY_74': 0.0,
 'PZ_74': 0.0,
 'E_75': 0.0,
 'PX_75': 0.0,
 'PY_75': 0.0,
 'PZ_75': 0.0,
 'E_76': 0.0,
 'PX_76': 0.0,
 'PY_76': 0.0,
 'PZ_76': 0.0,
 'E_77': 0.0,
 'PX_77': 0.0,
 'PY_77': 0.0,
 'PZ_77': 0.0,
 'E_78': 0.0,
 'PX_78': 0.0,
 'PY_78': 0.0,
 'PZ_78': 0.0,
 'E_79': 0.0,
 'PX_79': 0.0,
 'PY_79': 0.0,
 'PZ_79': 0.0,
 'E_80': 0.0,
 'PX_80': 0.0,
 'PY_80': 0.0,
 'PZ_80': 0.0,
 'E_81': 0.0,
 'PX_81': 0.0,
 'PY_81': 0.0,
 'PZ_81': 0.0,
 'E_82': 0.0,
 'PX_82': 0.0,
 'PY_82': 0.0,
 'PZ_82': 0.0,
 'E_83': 0.0,
 'PX_83': 0.0,
 'PY_83': 0.0,
 'PZ_83': 0.0,
 'E_84': 0.0,
 'PX_84': 0.0,
 'PY_84': 0.0,
 'PZ_84': 0.0,
 'E_85': 0.0,
 'PX_85': 0.0,
 'PY_85': 0.0,
 'PZ_85': 0.0,
 'E_86': 0.0,
 'PX_86': 0.0,
 'PY_86': 0.0,
 'PZ_86': 0.0,
 'E_87': 0.0,
 'PX_87': 0.0,
 'PY_87': 0.0,
 'PZ_87': 0.0,
 'E_88': 0.0,
 'PX_88': 0.0,
 'PY_88': 0.0,
 'PZ_88': 0.0,
 'E_89': 0.0,
 'PX_89': 0.0,
 'PY_89': 0.0,
 'PZ_89': 0.0,
 'E_90': 0.0,
 'PX_90': 0.0,
 'PY_90': 0.0,
 'PZ_90': 0.0,
 'E_91': 0.0,
 'PX_91': 0.0,
 'PY_91': 0.0,
 'PZ_91': 0.0,
 'E_92': 0.0,
 'PX_92': 0.0,
 'PY_92': 0.0,
 'PZ_92': 0.0,
 'E_93': 0.0,
 'PX_93': 0.0,
 'PY_93': 0.0,
 'PZ_93': 0.0,
 'E_94': 0.0,
 'PX_94': 0.0,
 'PY_94': 0.0,
 'PZ_94': 0.0,
 'E_95': 0.0,
 'PX_95': 0.0,
 'PY_95': 0.0,
 'PZ_95': 0.0,
 'E_96': 0.0,
 'PX_96': 0.0,
 'PY_96': 0.0,
 'PZ_96': 0.0,
 'E_97': 0.0,
 'PX_97': 0.0,
 'PY_97': 0.0,
 'PZ_97': 0.0,
 'E_98': 0.0,
 'PX_98': 0.0,
 'PY_98': 0.0,
 'PZ_98': 0.0,
 'E_99': 0.0,
 'PX_99': 0.0,
 'PY_99': 0.0,
 'PZ_99': 0.0,
 'E_100': 0.0,
 'PX_100': 0.0,
 'PY_100': 0.0,
 'PZ_100': 0.0,
 'E_101': 0.0,
 'PX_101': 0.0,
 'PY_101': 0.0,
 'PZ_101': 0.0,
 'E_102': 0.0,
 'PX_102': 0.0,
 'PY_102': 0.0,
 'PZ_102': 0.0,
 'E_103': 0.0,
 'PX_103': 0.0,
 'PY_103': 0.0,
 'PZ_103': 0.0,
 'E_104': 0.0,
 'PX_104': 0.0,
 'PY_104': 0.0,
 'PZ_104': 0.0,
 'E_105': 0.0,
 'PX_105': 0.0,
 'PY_105': 0.0,
 'PZ_105': 0.0,
 'E_106': 0.0,
 'PX_106': 0.0,
 'PY_106': 0.0,
 'PZ_106': 0.0,
 'E_107': 0.0,
 'PX_107': 0.0,
 'PY_107': 0.0,
 'PZ_107': 0.0,
 'E_108': 0.0,
 'PX_108': 0.0,
 'PY_108': 0.0,
 'PZ_108': 0.0,
 'E_109': 0.0,
 'PX_109': 0.0,
 'PY_109': 0.0,
 'PZ_109': 0.0,
 'E_110': 0.0,
 'PX_110': 0.0,
 'PY_110': 0.0,
 'PZ_110': 0.0,
 'E_111': 0.0,
 'PX_111': 0.0,
 'PY_111': 0.0,
 'PZ_111': 0.0,
 'E_112': 0.0,
 'PX_112': 0.0,
 'PY_112': 0.0,
 'PZ_112': 0.0,
 'E_113': 0.0,
 'PX_113': 0.0,
 'PY_113': 0.0,
 'PZ_113': 0.0,
 'E_114': 0.0,
 'PX_114': 0.0,
 'PY_114': 0.0,
 'PZ_114': 0.0,
 'E_115': 0.0,
 'PX_115': 0.0,
 'PY_115': 0.0,
 'PZ_115': 0.0,
 'E_116': 0.0,
 'PX_116': 0.0,
 'PY_116': 0.0,
 'PZ_116': 0.0,
 'E_117': 0.0,
 'PX_117': 0.0,
 'PY_117': 0.0,
 'PZ_117': 0.0,
 'E_118': 0.0,
 'PX_118': 0.0,
 'PY_118': 0.0,
 'PZ_118': 0.0,
 'E_119': 0.0,
 'PX_119': 0.0,
 'PY_119': 0.0,
 'PZ_119': 0.0,
 'E_120': 0.0,
 'PX_120': 0.0,
 'PY_120': 0.0,
 'PZ_120': 0.0,
 'E_121': 0.0,
 'PX_121': 0.0,
 'PY_121': 0.0,
 'PZ_121': 0.0,
 'E_122': 0.0,
 'PX_122': 0.0,
 'PY_122': 0.0,
 'PZ_122': 0.0,
 'E_123': 0.0,
 'PX_123': 0.0,
 'PY_123': 0.0,
 'PZ_123': 0.0,
 'E_124': 0.0,
 'PX_124': 0.0,
 'PY_124': 0.0,
 'PZ_124': 0.0,
 'E_125': 0.0,
 'PX_125': 0.0,
 'PY_125': 0.0,
 'PZ_125': 0.0,
 'E_126': 0.0,
 'PX_126': 0.0,
 'PY_126': 0.0,
 'PZ_126': 0.0,
 'E_127': 0.0,
 'PX_127': 0.0,
 'PY_127': 0.0,
 'PZ_127': 0.0,
 'E_128': 0.0,
 'PX_128': 0.0,
 'PY_128': 0.0,
 'PZ_128': 0.0,
 'E_129': 0.0,
 'PX_129': 0.0,
 'PY_129': 0.0,
 'PZ_129': 0.0,
 'E_130': 0.0,
 'PX_130': 0.0,
 'PY_130': 0.0,
 'PZ_130': 0.0,
 'E_131': 0.0,
 'PX_131': 0.0,
 'PY_131': 0.0,
 'PZ_131': 0.0,
 'E_132': 0.0,
 'PX_132': 0.0,
 'PY_132': 0.0,
 'PZ_132': 0.0,
 'E_133': 0.0,
 'PX_133': 0.0,
 'PY_133': 0.0,
 'PZ_133': 0.0,
 'E_134': 0.0,
 'PX_134': 0.0,
 'PY_134': 0.0,
 'PZ_134': 0.0,
 'E_135': 0.0,
 'PX_135': 0.0,
 'PY_135': 0.0,
 'PZ_135': 0.0,
 'E_136': 0.0,
 'PX_136': 0.0,
 'PY_136': 0.0,
 'PZ_136': 0.0,
 'E_137': 0.0,
 'PX_137': 0.0,
 'PY_137': 0.0,
 'PZ_137': 0.0,
 'E_138': 0.0,
 'PX_138': 0.0,
 'PY_138': 0.0,
 'PZ_138': 0.0,
 'E_139': 0.0,
 'PX_139': 0.0,
 'PY_139': 0.0,
 'PZ_139': 0.0,
 'E_140': 0.0,
 'PX_140': 0.0,
 'PY_140': 0.0,
 'PZ_140': 0.0,
 'E_141': 0.0,
 'PX_141': 0.0,
 'PY_141': 0.0,
 'PZ_141': 0.0,
 'E_142': 0.0,
 'PX_142': 0.0,
 'PY_142': 0.0,
 'PZ_142': 0.0,
 'E_143': 0.0,
 'PX_143': 0.0,
 'PY_143': 0.0,
 'PZ_143': 0.0,
 'E_144': 0.0,
 'PX_144': 0.0,
 'PY_144': 0.0,
 'PZ_144': 0.0,
 'E_145': 0.0,
 'PX_145': 0.0,
 'PY_145': 0.0,
 'PZ_145': 0.0,
 'E_146': 0.0,
 'PX_146': 0.0,
 'PY_146': 0.0,
 'PZ_146': 0.0,
 'E_147': 0.0,
 'PX_147': 0.0,
 'PY_147': 0.0,
 'PZ_147': 0.0,
 'E_148': 0.0,
 'PX_148': 0.0,
 'PY_148': 0.0,
 'PZ_148': 0.0,
 'E_149': 0.0,
 'PX_149': 0.0,
 'PY_149': 0.0,
 'PZ_149': 0.0,
 'E_150': 0.0,
 'PX_150': 0.0,
 'PY_150': 0.0,
 'PZ_150': 0.0,
 'E_151': 0.0,
 'PX_151': 0.0,
 'PY_151': 0.0,
 'PZ_151': 0.0,
 'E_152': 0.0,
 'PX_152': 0.0,
 'PY_152': 0.0,
 'PZ_152': 0.0,
 'E_153': 0.0,
 'PX_153': 0.0,
 'PY_153': 0.0,
 'PZ_153': 0.0,
 'E_154': 0.0,
 'PX_154': 0.0,
 'PY_154': 0.0,
 'PZ_154': 0.0,
 'E_155': 0.0,
 'PX_155': 0.0,
 'PY_155': 0.0,
 'PZ_155': 0.0,
 'E_156': 0.0,
 'PX_156': 0.0,
 'PY_156': 0.0,
 'PZ_156': 0.0,
 'E_157': 0.0,
 'PX_157': 0.0,
 'PY_157': 0.0,
 'PZ_157': 0.0,
 'E_158': 0.0,
 'PX_158': 0.0,
 'PY_158': 0.0,
 'PZ_158': 0.0,
 'E_159': 0.0,
 'PX_159': 0.0,
 'PY_159': 0.0,
 'PZ_159': 0.0,
 'E_160': 0.0,
 'PX_160': 0.0,
 'PY_160': 0.0,
 'PZ_160': 0.0,
 'E_161': 0.0,
 'PX_161': 0.0,
 'PY_161': 0.0,
 'PZ_161': 0.0,
 'E_162': 0.0,
 'PX_162': 0.0,
 'PY_162': 0.0,
 'PZ_162': 0.0,
 'E_163': 0.0,
 'PX_163': 0.0,
 'PY_163': 0.0,
 'PZ_163': 0.0,
 'E_164': 0.0,
 'PX_164': 0.0,
 'PY_164': 0.0,
 'PZ_164': 0.0,
 'E_165': 0.0,
 'PX_165': 0.0,
 'PY_165': 0.0,
 'PZ_165': 0.0,
 'E_166': 0.0,
 'PX_166': 0.0,
 'PY_166': 0.0,
 'PZ_166': 0.0,
 'E_167': 0.0,
 'PX_167': 0.0,
 'PY_167': 0.0,
 'PZ_167': 0.0,
 'E_168': 0.0,
 'PX_168': 0.0,
 'PY_168': 0.0,
 'PZ_168': 0.0,
 'E_169': 0.0,
 'PX_169': 0.0,
 'PY_169': 0.0,
 'PZ_169': 0.0,
 'E_170': 0.0,
 'PX_170': 0.0,
 'PY_170': 0.0,
 'PZ_170': 0.0,
 'E_171': 0.0,
 'PX_171': 0.0,
 'PY_171': 0.0,
 'PZ_171': 0.0,
 'E_172': 0.0,
 'PX_172': 0.0,
 'PY_172': 0.0,
 'PZ_172': 0.0,
 'E_173': 0.0,
 'PX_173': 0.0,
 'PY_173': 0.0,
 'PZ_173': 0.0,
 'E_174': 0.0,
 'PX_174': 0.0,
 'PY_174': 0.0,
 'PZ_174': 0.0,
 'E_175': 0.0,
 'PX_175': 0.0,
 'PY_175': 0.0,
 'PZ_175': 0.0,
 'E_176': 0.0,
 'PX_176': 0.0,
 'PY_176': 0.0,
 'PZ_176': 0.0,
 'E_177': 0.0,
 'PX_177': 0.0,
 'PY_177': 0.0,
 'PZ_177': 0.0,
 'E_178': 0.0,
 'PX_178': 0.0,
 'PY_178': 0.0,
 'PZ_178': 0.0,
 'E_179': 0.0,
 'PX_179': 0.0,
 'PY_179': 0.0,
 'PZ_179': 0.0,
 'E_180': 0.0,
 'PX_180': 0.0,
 'PY_180': 0.0,
 'PZ_180': 0.0,
 'E_181': 0.0,
 'PX_181': 0.0,
 'PY_181': 0.0,
 'PZ_181': 0.0,
 'E_182': 0.0,
 'PX_182': 0.0,
 'PY_182': 0.0,
 'PZ_182': 0.0,
 'E_183': 0.0,
 'PX_183': 0.0,
 'PY_183': 0.0,
 'PZ_183': 0.0,
 'E_184': 0.0,
 'PX_184': 0.0,
 'PY_184': 0.0,
 'PZ_184': 0.0,
 'E_185': 0.0,
 'PX_185': 0.0,
 'PY_185': 0.0,
 'PZ_185': 0.0,
 'E_186': 0.0,
 'PX_186': 0.0,
 'PY_186': 0.0,
 'PZ_186': 0.0,
 'E_187': 0.0,
 'PX_187': 0.0,
 'PY_187': 0.0,
 'PZ_187': 0.0,
 'E_188': 0.0,
 'PX_188': 0.0,
 'PY_188': 0.0,
 'PZ_188': 0.0,
 'E_189': 0.0,
 'PX_189': 0.0,
 'PY_189': 0.0,
 'PZ_189': 0.0,
 'E_190': 0.0,
 'PX_190': 0.0,
 'PY_190': 0.0,
 'PZ_190': 0.0,
 'E_191': 0.0,
 'PX_191': 0.0,
 'PY_191': 0.0,
 'PZ_191': 0.0,
 'E_192': 0.0,
 'PX_192': 0.0,
 'PY_192': 0.0,
 'PZ_192': 0.0,
 'E_193': 0.0,
 'PX_193': 0.0,
 'PY_193': 0.0,
 'PZ_193': 0.0,
 'E_194': 0.0,
 'PX_194': 0.0,
 'PY_194': 0.0,
 'PZ_194': 0.0,
 'E_195': 0.0,
 'PX_195': 0.0,
 'PY_195': 0.0,
 'PZ_195': 0.0,
 'E_196': 0.0,
 'PX_196': 0.0,
 'PY_196': 0.0,
 'PZ_196': 0.0,
 'E_197': 0.0,
 'PX_197': 0.0,
 'PY_197': 0.0,
 'PZ_197': 0.0,
 'E_198': 0.0,
 'PX_198': 0.0,
 'PY_198': 0.0,
 'PZ_198': 0.0,
 'E_199': 0.0,
 'PX_199': 0.0,
 'PY_199': 0.0,
 'PZ_199': 0.0,
 'truthE': 0.0,
 'truthPX': 0.0,
 'truthPY': 0.0,
 'truthPZ': 0.0,
 'ttv': 0,
 'is_signal_new': 0}

Here we see that a single row is repesented as a dictionary where the keys correspond to the column names. Since we won’t need the top-quark 4-vector columns, let’s remove them along with the ttv one:

top_tagging_ds = top_tagging_ds.remove_columns(
    ["truthE", "truthPX", "truthPY", "truthPZ", "ttv"]
)

Although 🤗 Datasets provides a lot of low-level functionality for preprocessing datasets, it is often conventient to convert a Dataset object to a Pandas DataFrame. To enable the conversion, 🤗 Datasets provides a set_format() method that allows us to change the output format of the dataset:

# Convert output format to DataFrames
top_tagging_ds.set_format("pandas")
# Create DataFrames for the training and test splits
train_df, test_df = top_tagging_ds["train"][:], top_tagging_ds["test"][:]
# Peek at first few rows
train_df.head()
E_0 PX_0 PY_0 PZ_0 E_1 PX_1 PY_1 PZ_1 E_2 PX_2 ... PZ_197 E_198 PX_198 PY_198 PZ_198 E_199 PX_199 PY_199 PZ_199 is_signal_new
0 474.071136 -250.347031 -223.651962 -334.738098 103.236237 -48.866222 -56.790775 -71.025490 105.255569 -55.415001 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
1 150.504532 120.062393 76.852005 -48.274265 82.257057 63.801739 42.754807 -29.454842 48.573559 36.763199 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2 251.645386 10.427651 -147.573746 203.564880 104.147797 10.718256 -54.497948 88.101395 78.043213 5.724113 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
3 451.566132 129.885437 -99.066292 -420.984100 208.410919 59.033958 -46.177090 -194.467941 190.183304 54.069675 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
4 399.093903 -168.432083 -47.205597 -358.717438 273.691956 -121.926941 -30.803854 -243.088928 152.837219 -44.400204 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

5 rows × 801 columns

As we can see, each row consists of 4-vectors \((E_i, p_{x_i}, p_{y_i}, p_{z_i})\) that correspond to the maximum 200 particles that make up each jet. We can also see that each jet has been padded with zeros, since most won’t have 200 particles. We also have an is_signal_new column that indicates whether the jet is a top quark signal (1) or QCD background (0).

Now that we’ve had a look at a sample of the raw data, let’s take a look at how we can convert it to a format that is suitable for neural networks!

Introducing fastai#

To train our model, we’ll use the fastai library. fastai is the most popular framework for training deep neural networks with PyTorch and provides various application-specific classes for different types of deep learning data structures and architectures. It is also designed with a layered API, which means:

  • We can use high-level components to quickly and easily get state-of-the-art results in standard deep learning domains

  • Low-level components can be mixed and matched to build new approaches

In particular, this approach will allow us in later lessons to use pure PyTorch code to define our models, and then let fastai take care of the training loop (which is often an error-prone process).

Basics of the API

The most common steps one takes when training a model in fastai are:

  • Create DataLoaders to feed batches of data to the model

  • Create a Learner which wraps the architecture, optimizer, and data, and automatically chooses an appropriate loss function where possible

  • Find a good learning rate

  • Train your model

  • Evaluate your model

Let’s go through each of these steps to build a neural network that can classify top quark jets from the QCD background!

From data to DataLoaders#

To wrangle our data in a format that’s suitable for training neural nets, we need to create an object called DataLoaders. To turn our dataset into a DataLoaders object we need to specify:

  • What type of data we are dealing with (tabular, images, etc)

  • How to get the examples

  • How to label each example

  • How to create the validation set

fastai provides a number of classes for different kinds of deep learning datasets and problems. In our case, the data is in a tabular format (i.e. a table of rows and columns), so we can use the TabularDataLoaders class:

# Downsample to ~0.5 if you're running on Colab / Kaggle which have limited RAM
frac_of_samples = 1.0
train_df = train_df.sample(int(frac_of_samples * len(train_df)), random_state=42)

features = list(train_df.drop(columns=["is_signal_new"]).columns)
splits = RandomSplitter(valid_pct=0.20, seed=42)(range_of(train_df))

dls = TabularDataLoaders.from_df(
    df=train_df,
    cont_names=features,
    y_names="is_signal_new",
    y_block=CategoryBlock,
    splits=splits,
    bs=1024,
)

Let’s unpack this code a bit. The first thing we’ve specified is which columns of our dataset correspond to continuous features via the cont_names argument. To do this, we’ve simply grabbed all column names from our DataFrame, except for the label column is_signal_new. Next, we’ve specified which column is the target in y_names and that this is a categorical feature with CategoryBlock. Finally we’ve specified the training and validation splits with RandomSplitter and picked a batch size of 1,024 examples.

After we’ve defined a DataLoaders object, we can take a look at the data by using the show_batch() method:

dls.show_batch()
E_0 PX_0 PY_0 PZ_0 E_1 PX_1 PY_1 PZ_1 E_2 PX_2 PY_2 PZ_2 E_3 PX_3 PY_3 PZ_3 E_4 PX_4 PY_4 PZ_4 E_5 PX_5 PY_5 PZ_5 E_6 PX_6 PY_6 PZ_6 E_7 PX_7 PY_7 PZ_7 E_8 PX_8 PY_8 PZ_8 E_9 PX_9 PY_9 PZ_9 E_10 PX_10 PY_10 PZ_10 E_11 PX_11 PY_11 PZ_11 E_12 PX_12 PY_12 PZ_12 E_13 PX_13 PY_13 PZ_13 E_14 PX_14 PY_14 PZ_14 E_15 PX_15 PY_15 PZ_15 E_16 PX_16 PY_16 PZ_16 E_17 PX_17 PY_17 PZ_17 E_18 PX_18 PY_18 PZ_18 E_19 PX_19 PY_19 PZ_19 E_20 PX_20 PY_20 PZ_20 E_21 PX_21 PY_21 PZ_21 E_22 PX_22 PY_22 PZ_22 E_23 PX_23 PY_23 PZ_23 E_24 PX_24 PY_24 PZ_24 E_25 PX_25 PY_25 PZ_25 E_26 PX_26 PY_26 PZ_26 E_27 PX_27 PY_27 PZ_27 E_28 PX_28 PY_28 PZ_28 E_29 PX_29 PY_29 PZ_29 E_30 PX_30 PY_30 PZ_30 E_31 PX_31 PY_31 PZ_31 E_32 PX_32 PY_32 PZ_32 E_33 PX_33 PY_33 PZ_33 E_34 PX_34 PY_34 PZ_34 E_35 PX_35 PY_35 PZ_35 E_36 PX_36 PY_36 PZ_36 E_37 PX_37 PY_37 PZ_37 E_38 PX_38 PY_38 PZ_38 E_39 PX_39 PY_39 PZ_39 E_40 PX_40 PY_40 PZ_40 E_41 PX_41 PY_41 PZ_41 E_42 PX_42 PY_42 PZ_42 E_43 PX_43 PY_43 PZ_43 E_44 PX_44 PY_44 PZ_44 E_45 PX_45 PY_45 PZ_45 E_46 PX_46 PY_46 PZ_46 E_47 PX_47 PY_47 PZ_47 E_48 PX_48 PY_48 PZ_48 E_49 PX_49 PY_49 PZ_49 E_50 PX_50 PY_50 PZ_50 E_51 PX_51 PY_51 PZ_51 E_52 PX_52 PY_52 PZ_52 E_53 PX_53 PY_53 PZ_53 E_54 PX_54 PY_54 PZ_54 E_55 PX_55 PY_55 PZ_55 E_56 PX_56 PY_56 PZ_56 E_57 PX_57 PY_57 PZ_57 E_58 PX_58 PY_58 PZ_58 E_59 PX_59 PY_59 PZ_59 E_60 PX_60 PY_60 PZ_60 E_61 PX_61 PY_61 PZ_61 E_62 PX_62 PY_62 PZ_62 E_63 PX_63 PY_63 PZ_63 E_64 PX_64 PY_64 PZ_64 E_65 PX_65 PY_65 PZ_65 E_66 PX_66 PY_66 PZ_66 E_67 PX_67 PY_67 PZ_67 E_68 PX_68 PY_68 PZ_68 E_69 PX_69 PY_69 PZ_69 E_70 PX_70 PY_70 PZ_70 E_71 PX_71 PY_71 PZ_71 E_72 PX_72 PY_72 PZ_72 E_73 PX_73 PY_73 PZ_73 E_74 PX_74 PY_74 PZ_74 E_75 PX_75 PY_75 PZ_75 E_76 PX_76 PY_76 PZ_76 E_77 PX_77 PY_77 PZ_77 E_78 PX_78 PY_78 PZ_78 E_79 PX_79 PY_79 PZ_79 E_80 PX_80 PY_80 PZ_80 E_81 PX_81 PY_81 PZ_81 E_82 PX_82 PY_82 PZ_82 E_83 PX_83 PY_83 PZ_83 E_84 PX_84 PY_84 PZ_84 E_85 PX_85 PY_85 PZ_85 E_86 PX_86 PY_86 PZ_86 E_87 PX_87 PY_87 PZ_87 E_88 PX_88 PY_88 PZ_88 E_89 PX_89 PY_89 PZ_89 E_90 PX_90 PY_90 PZ_90 E_91 PX_91 PY_91 PZ_91 E_92 PX_92 PY_92 PZ_92 E_93 PX_93 PY_93 PZ_93 E_94 PX_94 PY_94 PZ_94 E_95 PX_95 PY_95 PZ_95 E_96 PX_96 PY_96 PZ_96 E_97 PX_97 PY_97 PZ_97 E_98 PX_98 PY_98 PZ_98 E_99 PX_99 PY_99 PZ_99 E_100 PX_100 PY_100 PZ_100 E_101 PX_101 PY_101 PZ_101 E_102 PX_102 PY_102 PZ_102 E_103 PX_103 PY_103 PZ_103 E_104 PX_104 PY_104 PZ_104 E_105 PX_105 PY_105 PZ_105 E_106 PX_106 PY_106 PZ_106 E_107 PX_107 PY_107 PZ_107 E_108 PX_108 PY_108 PZ_108 E_109 PX_109 PY_109 PZ_109 E_110 PX_110 PY_110 PZ_110 E_111 PX_111 PY_111 PZ_111 E_112 PX_112 PY_112 PZ_112 E_113 PX_113 PY_113 PZ_113 E_114 PX_114 PY_114 PZ_114 E_115 PX_115 PY_115 PZ_115 E_116 PX_116 PY_116 PZ_116 E_117 PX_117 PY_117 PZ_117 E_118 PX_118 PY_118 PZ_118 E_119 PX_119 PY_119 PZ_119 E_120 PX_120 PY_120 PZ_120 E_121 PX_121 PY_121 PZ_121 E_122 PX_122 PY_122 PZ_122 E_123 PX_123 PY_123 PZ_123 E_124 PX_124 PY_124 PZ_124 E_125 PX_125 PY_125 PZ_125 E_126 PX_126 PY_126 PZ_126 E_127 PX_127 PY_127 PZ_127 E_128 PX_128 PY_128 PZ_128 E_129 PX_129 PY_129 PZ_129 E_130 PX_130 PY_130 PZ_130 E_131 PX_131 PY_131 PZ_131 E_132 PX_132 PY_132 PZ_132 E_133 PX_133 PY_133 PZ_133 E_134 PX_134 PY_134 PZ_134 E_135 PX_135 PY_135 PZ_135 E_136 PX_136 PY_136 PZ_136 E_137 PX_137 PY_137 PZ_137 E_138 PX_138 PY_138 PZ_138 E_139 PX_139 PY_139 PZ_139 E_140 PX_140 PY_140 PZ_140 E_141 PX_141 PY_141 PZ_141 E_142 PX_142 PY_142 PZ_142 E_143 PX_143 PY_143 PZ_143 E_144 PX_144 PY_144 PZ_144 E_145 PX_145 PY_145 PZ_145 E_146 PX_146 PY_146 PZ_146 E_147 PX_147 PY_147 PZ_147 E_148 PX_148 PY_148 PZ_148 E_149 PX_149 PY_149 PZ_149 E_150 PX_150 PY_150 PZ_150 E_151 PX_151 PY_151 PZ_151 E_152 PX_152 PY_152 PZ_152 E_153 PX_153 PY_153 PZ_153 E_154 PX_154 PY_154 PZ_154 E_155 PX_155 PY_155 PZ_155 E_156 PX_156 PY_156 PZ_156 E_157 PX_157 PY_157 PZ_157 E_158 PX_158 PY_158 PZ_158 E_159 PX_159 PY_159 PZ_159 E_160 PX_160 PY_160 PZ_160 E_161 PX_161 PY_161 PZ_161 E_162 PX_162 PY_162 PZ_162 E_163 PX_163 PY_163 PZ_163 E_164 PX_164 PY_164 PZ_164 E_165 PX_165 PY_165 PZ_165 E_166 PX_166 PY_166 PZ_166 E_167 PX_167 PY_167 PZ_167 E_168 PX_168 PY_168 PZ_168 E_169 PX_169 PY_169 PZ_169 E_170 PX_170 PY_170 PZ_170 E_171 PX_171 PY_171 PZ_171 E_172 PX_172 PY_172 PZ_172 E_173 PX_173 PY_173 PZ_173 E_174 PX_174 PY_174 PZ_174 E_175 PX_175 PY_175 PZ_175 E_176 PX_176 PY_176 PZ_176 E_177 PX_177 PY_177 PZ_177 E_178 PX_178 PY_178 PZ_178 E_179 PX_179 PY_179 PZ_179 E_180 PX_180 PY_180 PZ_180 E_181 PX_181 PY_181 PZ_181 E_182 PX_182 PY_182 PZ_182 E_183 PX_183 PY_183 PZ_183 E_184 PX_184 PY_184 PZ_184 E_185 PX_185 PY_185 PZ_185 E_186 PX_186 PY_186 PZ_186 E_187 PX_187 PY_187 PZ_187 E_188 PX_188 PY_188 PZ_188 E_189 PX_189 PY_189 PZ_189 E_190 PX_190 PY_190 PZ_190 E_191 PX_191 PY_191 PZ_191 E_192 PX_192 PY_192 PZ_192 E_193 PX_193 PY_193 PZ_193 E_194 PX_194 PY_194 PZ_194 E_195 PX_195 PY_195 PZ_195 E_196 PX_196 PY_196 PZ_196 E_197 PX_197 PY_197 PZ_197 E_198 PX_198 PY_198 PZ_198 E_199 PX_199 PY_199 PZ_199 is_signal_new
0 156.651123 147.405258 26.006823 -46.205074 66.166000 61.714252 13.618260 -19.591679 59.187538 43.524006 18.544239 -35.565948 52.280418 39.901722 14.766282 -30.381767 46.479649 37.455952 -4.363357 -27.172979 37.165035 35.369465 1.354363 -11.331660 36.232121 27.362452 10.842762 -21.130484 35.059006 26.817917 10.583280 -19.948118 27.499258 21.504807 -7.419861 -15.449861 24.723345 18.445026 7.439287 -14.686109 21.618416 17.497467 5.555872 -11.416079 20.788595 15.854955 6.082806 -11.991064 18.213100 13.441398 6.698515 -10.304162 12.677663 12.036289 2.944411 -2.679800 12.660934 11.887339 1.900199 -3.921694 9.484063 7.706819 2.073808 -5.123643 8.043362 6.180357 2.354782 -4.577538 7.829610 5.816335 2.422960 -4.647829 7.204622 5.786285 -0.912594 -4.194359 6.569118 4.983078 -0.247118 -4.273309 5.204410 4.723341 0.999273 -1.943549 5.212553 4.281167 1.108515 -2.759259 5.343522 4.059355 1.723231 -3.017504 3.995430 2.993573 1.290984 -2.309836 3.862169 3.138426 0.844511 -2.086487 3.488208 3.158298 0.699826 -1.304989 2.978119 2.682876 -0.341816 -1.246809 3.168274 2.370644 -0.752072 -1.962752 2.761582 2.272017 0.939171 -1.257868 3.092704 2.281398 -0.749264 -1.949011 3.142989 2.093421 1.106632 -2.066720 2.061056 1.755722 0.585744 -0.906805 2.281940 1.579042 -0.750299 -1.466605 1.614905 1.292173 -0.374225 -0.893399 1.415592 1.206074 0.533570 -0.514383 1.675033 1.266876 0.103127 -1.090928 1.120713 1.010384 0.072985 -0.479369 0.886037 0.871607 0.097665 -0.125795 0.932767 0.800974 0.097008 -0.468065 1.065342 0.602590 0.389746 -0.787360 0.728177 0.659168 0.136783 -0.277542 0.746282 0.631983 0.138891 -0.371811 0.668374 0.626190 -0.143476 -0.184459 0.616981 0.575796 0.220805 -0.019220 0.595697 0.543712 -0.019745 -0.242575 0.647482 0.387422 0.197245 -0.479825 0.660883 0.346850 0.072733 -0.557828 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
1 217.770920 112.669815 -55.818962 -177.803070 169.487793 57.047081 -86.189850 -134.324432 79.572060 52.154568 -31.429808 -51.222851 56.272415 34.468712 -25.402637 -36.512993 47.898685 33.165764 -16.905451 -30.141701 38.172230 26.431019 -13.472577 -24.021032 43.246582 14.914506 -23.153084 -33.343048 42.543930 22.392347 -10.330865 -34.667595 32.264137 20.407352 -13.483160 -21.040884 28.707653 18.947687 -11.550921 -18.212378 17.897223 10.066465 -7.947463 -12.482575 15.136470 9.821433 -5.684728 -10.016788 12.714173 7.650305 -4.211721 -9.240370 10.947527 6.395720 -3.739368 -8.059792 9.969221 6.233003 -3.332090 -7.030806 9.037607 5.644869 -2.770133 -6.491545 9.774871 3.194082 -5.116557 -7.691995 7.610077 4.280361 -3.379340 -5.307716 7.548386 4.600593 -2.243847 -5.547777 7.722602 4.280883 -2.738911 -5.814722 7.851254 2.219324 -3.738460 -6.537639 7.487554 3.762560 -2.020533 -6.150126 3.724781 2.421021 -1.775541 -2.204564 3.201555 2.680049 -1.256285 -1.220262 3.649110 2.674477 -1.156612 -2.196685 3.758146 2.474789 -1.060927 -2.621739 3.019944 1.376533 -1.026755 -2.484149 2.923555 1.332597 -0.993983 -2.404861 2.215418 1.350253 -0.658559 -1.628248 1.959735 0.949403 -0.752075 -1.540642 0.888710 0.648152 -0.440543 -0.419079 0.848160 0.685332 -0.233436 -0.441818 0.675687 0.371343 -0.327507 -0.459779 0.911277 0.391090 -0.264506 -0.779430 0.496820 0.104868 -0.304911 -0.377972 0.500294 0.158566 -0.132538 -0.455614 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
2 197.560150 -56.235020 167.053986 89.222221 165.007935 -46.307407 140.065323 73.925278 58.558525 7.904080 38.231747 43.645844 24.165867 -7.660753 20.127789 10.962393 31.479214 6.973133 20.029806 23.262056 25.901262 3.065581 17.752800 18.609558 19.532864 2.014424 13.778230 13.698002 15.889723 1.921973 10.279412 11.963403 11.679363 -2.999971 9.845611 5.520113 15.129631 2.799529 9.602891 11.351337 10.367282 -4.385475 7.676659 5.414523 10.548188 1.402773 7.611049 7.167179 10.266623 1.767461 7.162259 7.140145 10.980591 1.992374 7.085339 8.148730 8.134279 -1.721148 6.898781 3.951072 10.490783 1.322561 6.552466 8.085329 10.063974 1.033956 6.523703 7.593143 6.653511 -2.662420 5.401315 2.829580 7.802452 0.912603 5.774929 5.166779 6.776989 -4.736222 3.121546 3.708334 7.355442 0.376328 5.583453 4.773464 7.668360 1.090786 5.371960 5.362460 5.996251 1.288733 4.357318 3.912539 5.400266 1.283929 4.101466 3.269920 4.625764 0.696765 3.567205 2.861340 4.286886 -0.753782 3.452291 2.427115 4.278675 0.500963 3.018395 2.990884 3.064641 -1.061758 2.513021 1.396214 2.755710 -0.583086 2.337152 1.338534 2.760834 0.142814 2.016001 1.880838 2.745739 -0.898090 1.681090 1.976475 2.824965 -0.544976 1.690960 2.196380 2.142634 -1.143083 1.296435 1.266293 2.576994 0.463196 1.605608 1.961727 2.119251 0.168004 1.398939 1.583024 1.918472 0.472835 1.186520 1.431480 1.664753 0.230758 1.224832 1.103603 1.378997 -0.583331 1.021106 0.720209 1.180363 -0.468122 0.946170 0.528092 1.263083 0.311305 0.781181 0.942457 1.097036 0.266244 0.731841 0.772664 1.048604 -0.213505 0.648294 0.796054 1.238005 -0.316156 0.560488 1.057617 0.870312 -0.057704 0.548431 0.673304 0.437953 0.123507 0.333553 0.255522 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
3 610.647827 226.345108 380.794891 420.302155 63.992065 20.026573 40.651062 45.181984 34.088505 12.317686 21.222988 23.661900 19.412596 7.212401 11.676986 13.728735 12.422605 4.078647 7.691472 8.861547 8.593320 3.107085 5.503000 5.823071 8.785389 1.611511 5.721509 6.469190 6.476299 2.561637 3.974964 4.424943 6.261754 2.436332 4.014475 4.142202 4.367147 -0.180545 3.841729 2.068937 5.324480 1.876532 2.614121 4.242061 3.464139 1.269829 2.293913 2.264013 3.984544 1.646987 2.019110 3.014501 3.175199 1.474765 1.881939 2.089322 2.759936 -0.058105 2.299892 1.524586 3.104477 0.312899 1.925831 2.414755 1.867687 0.454739 1.536920 0.958824 2.131482 0.814061 1.346203 1.438144 2.045079 0.624774 1.419305 1.333259 1.957313 0.909101 1.160098 1.287937 1.731558 0.245909 1.255657 1.166682 1.484838 0.382009 1.185589 0.808202 2.347440 0.466752 1.148688 1.993272 1.491139 0.204910 1.188494 0.876921 1.666883 0.304074 0.909618 1.363317 1.286895 0.051610 0.841874 0.971948 0.931831 -0.012308 0.794448 0.486837 0.872798 0.092387 0.769380 0.401616 1.031228 0.033445 0.730115 0.727493 0.881844 0.453599 0.541407 0.527991 0.791480 0.007617 0.681956 0.401644 0.905531 0.234966 0.577660 0.656571 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
4 267.671173 -102.091461 -158.199081 -190.258362 186.682709 -106.923073 -120.735558 -94.025612 43.500698 -25.432400 -32.653172 -13.389325 33.176712 -16.007950 -26.435410 -12.066850 25.473227 -16.826694 -14.994489 -11.870672 22.224855 -12.763152 -14.124808 -11.468911 22.096191 -11.916757 -13.761514 -12.524111 20.754120 -11.957877 -13.286635 -10.545519 8.926038 -4.627290 -6.742624 -3.577618 9.328678 -5.104222 -6.056514 -4.928466 8.100491 -4.943729 -4.181729 -4.867303 6.637937 -4.049828 -3.903955 -3.524235 5.622627 -2.480986 -4.644761 -1.971001 7.360441 -2.632272 -4.206151 -5.436500 6.706080 -2.552033 -3.882224 -4.836009 6.284374 -2.633040 -3.749263 -4.301568 4.440441 -2.336462 -3.143116 -2.092673 3.807630 -2.125382 -2.990122 -1.019787 4.108629 -2.040272 -2.983819 -1.953190 4.327999 -2.688244 -2.379228 -2.417477 4.888242 -2.052459 -2.825049 -3.420734 2.397446 -1.613496 -1.423905 -1.056823 1.777853 -0.819084 -1.452035 -0.617621 2.864586 -0.385838 -1.549062 -2.378527 2.145798 -0.754262 -0.644166 -1.902784 1.232828 -0.363937 -0.790984 -0.872789 0.577701 -0.361531 -0.389291 -0.226905 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
5 164.499893 99.829689 114.322830 -63.439232 123.595650 73.272484 87.150879 -48.080688 46.899860 29.951080 30.025049 -20.025631 44.196377 26.861120 30.690706 -17.025875 44.664692 16.855186 30.713501 -27.704121 31.599348 18.721317 22.216320 -12.428443 31.945690 25.068062 13.442268 -14.540455 29.875772 26.329243 6.924061 -12.304070 32.041317 9.733595 22.010416 -21.152889 26.031197 15.625027 18.247799 -10.024946 22.373161 7.985788 16.161669 -13.250886 17.998421 15.480885 5.098110 -7.635093 12.085132 10.545874 3.623783 -4.658664 11.461868 7.127863 7.795332 -4.449806 10.355254 9.125990 2.399951 -4.264719 9.254187 3.680014 6.454139 -5.517386 7.729150 4.620795 5.246796 -3.295321 8.619956 3.220232 6.199579 -5.049650 6.765135 5.536580 2.547601 -2.936506 6.015748 1.827709 4.381334 -3.694945 4.865225 3.817785 2.047214 -2.214464 4.902287 1.720700 3.702501 -2.713503 4.228647 2.289000 2.801015 -2.190035 2.536126 1.562588 1.672837 -1.091728 2.611094 1.076857 1.843695 -1.502991 2.746674 1.359373 1.173785 -2.078112 2.139244 1.714339 0.432192 -1.204416 1.951081 0.655775 1.540169 -1.002275 2.171378 0.748067 1.082292 -1.727404 1.497544 1.267451 0.323287 -0.729171 1.528786 1.284921 0.187024 -0.806961 1.535819 1.136983 0.444848 -0.931729 1.685910 0.422827 1.132676 -1.174970 1.542091 0.713069 0.951747 -0.981710 1.360734 0.912283 0.647170 -0.774924 1.329683 0.369132 0.933771 -0.871704 0.872655 0.632663 0.316496 -0.510975 0.673151 0.473445 0.421085 -0.227308 0.701269 0.168290 0.481972 -0.480791 0.320729 0.179812 0.263012 -0.036872 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
6 275.454407 -122.148170 245.166122 29.129313 118.976463 -54.020538 103.525024 22.798040 56.767715 -25.233208 50.541958 5.600825 39.765671 -17.675812 35.404541 3.923367 28.905994 -12.309326 25.961252 3.170231 17.560022 -7.289474 15.827994 2.166228 15.634098 -6.248994 14.285532 1.139592 13.518690 -4.890047 12.514712 1.491443 8.883497 -3.600181 8.090115 0.710819 6.004735 0.449896 5.872437 1.170002 5.401881 -2.026861 4.984735 0.473888 5.193821 -2.154214 4.684274 0.626673 4.936502 -2.095330 4.465212 0.201305 4.855865 -1.840441 4.480408 0.343733 4.459344 -2.125681 3.889884 0.485834 4.096872 -1.933278 3.561832 0.600119 3.042507 -1.206348 2.791826 -0.085335 2.960997 -0.065342 2.920553 0.483327 2.535212 -0.774514 2.407406 -0.178395 2.354776 -0.906100 2.123487 0.463419 2.187518 -0.917977 1.983081 -0.099711 2.039711 -0.906492 1.764101 0.476066 1.375132 -0.661072 1.196265 0.151399 1.180829 0.083918 1.159590 -0.206555 1.024851 -0.611182 0.819252 0.074846 1.115528 -0.765417 0.610163 0.535015 0.744857 -0.101565 0.703446 -0.222846 0.665840 -0.228176 0.603181 -0.165684 0.556547 -0.100163 0.538030 0.101175 0.579779 -0.117168 0.395411 0.407512 0.316470 -0.109241 0.294108 0.041476 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
7 195.776382 71.457642 -43.164070 -177.084900 89.740707 31.712599 -42.891129 -72.166870 97.034958 28.485353 -19.710289 -90.641449 105.457581 29.350021 -17.268545 -99.808189 91.525826 26.652744 -18.645784 -85.550819 45.013363 17.892401 -20.705256 -35.740135 67.904793 21.080061 -14.514310 -62.896954 65.139336 19.158308 -13.387456 -60.801876 28.043575 10.094787 -11.583507 -23.459747 33.811947 12.049286 -9.135211 -30.242525 39.968479 11.967908 -7.647948 -37.359837 19.605148 6.826134 -10.283878 -15.231794 19.917049 7.889309 -9.450686 -15.656697 26.502373 8.925963 -8.377806 -23.505644 28.139923 10.174318 -6.100360 -25.517134 21.598833 8.947879 -7.567963 -18.143070 32.135963 9.605417 -6.528434 -29.963903 21.106709 7.316864 -8.853605 -17.707916 17.236910 6.328868 -7.247945 -14.301180 22.669622 6.760088 -6.758747 -20.555592 17.584393 6.982410 -5.573163 -15.145845 13.972600 4.864989 -7.329326 -10.855709 14.518909 5.529046 -6.366781 -11.819158 19.141750 6.333881 -5.494456 -17.207541 14.319798 6.128025 -4.859442 -11.995406 18.058144 5.734624 -5.234973 -16.303547 15.012374 5.689663 -3.815546 -13.358171 16.057026 5.201401 -3.606006 -14.757041 14.916764 5.126918 -3.422858 -13.583395 10.874345 4.409315 -3.699378 -9.226262 9.346753 3.026163 -4.479315 -7.624949 11.745160 4.989849 -0.893933 -10.594861 11.756345 4.166164 -1.612040 -10.874559 7.894176 3.271113 -3.024977 -6.516698 9.953744 2.944449 -3.067981 -8.999707 11.413699 3.805331 -1.026229 -10.711622 8.001363 2.741758 -2.334764 -7.145170 8.111948 3.066202 -1.367840 -7.384519 8.008175 2.509926 -2.168585 -7.288922 9.635747 3.264674 -0.398368 -9.057087 6.581693 2.098787 -2.274143 -5.808791 6.415633 2.281583 -1.853963 -5.702415 5.414214 2.242979 -1.897073 -4.547952 6.342005 2.173160 -1.850571 -5.663373 6.010907 1.867151 -1.812217 -5.418544 5.255612 2.101340 -1.434451 -4.598715 6.058692 2.138798 -0.903120 -5.596219 4.413128 1.552851 -1.639159 -3.79177 5.400943 1.975864 -1.027184 -4.920471 4.535516 2.191744 -0.04438 -3.970541 3.779752 1.223756 -1.811399 -3.083469 6.278596 2.127186 -0.423808 -5.892048 5.818707 1.999318 -0.456253 -5.445357 3.557932 1.409252 -1.339549 -2.979681 5.123084 1.30832 -1.308706 -4.777193 4.661511 1.370572 -1.163642 -4.300832 2.679124 1.142659 -1.387828 -1.986446 3.639842 0.980154 -1.325995 -3.244917 3.713544 1.413734 -0.797830 -3.339945 2.017078 1.468336 -0.412986 -1.319862 3.527530 1.128044 -0.920737 -3.212978 3.425990 1.389430 -0.381687 -3.108249 1.761514 0.426779 -1.088822 -1.317293 2.786923 0.932916 -0.644128 -2.545920 2.483886 1.029132 -0.321483 -2.237684 2.400906 0.922831 0.072338 -2.215288 1.222659 0.834952 -0.312236 -0.836814 2.629696 0.828367 -0.234595 -2.484768 2.126755 0.712590 -0.255136 -1.987513 1.422644 0.582351 -0.281356 -1.267131 2.066752 0.381331 -0.502643 -1.968096 1.200118 0.479841 -0.327557 -1.050116 1.053963 0.365367 -0.442104 -0.884244 1.075273 0.508198 -0.000647 -0.947601 1.185643 0.295148 -0.397664 -1.077266 1.479972 0.452914 -0.110404 -1.404634 1.581326 0.422413 -0.124003 -1.51881 1.291269 0.402151 0.002812 -1.227047 0.656545 0.290875 -0.275079 -0.52036 0.59395 0.143902 -0.367131 -0.444167 1.080945 0.380208 -0.100681 -1.00685 0.658771 0.354148 -0.156366 -0.533018 1.399878 0.162971 -0.321637 -1.352644 1.104601 0.268391 -0.233508 -1.045745 1.105273 0.325975 -0.1373 -1.047147 1.187471 0.241487 -0.15016 -1.15292 0.885596 0.166324 -0.165458 -0.853955 0.724353 0.151978 -0.074951 -0.704253 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
8 59.403610 41.055508 -33.719429 -26.575066 48.023834 40.540417 -25.325750 -4.622713 47.623581 40.172688 -25.056154 -5.133194 35.076084 34.462933 -4.700911 -4.532028 35.169415 24.306574 -19.963308 -15.733547 22.860498 18.416842 -13.533061 -0.527802 22.762016 21.673370 -6.532049 -2.388879 21.087252 17.847937 -11.186087 -0.997427 18.204227 17.811428 -2.865510 -2.436343 17.363245 16.520151 -4.841825 -2.263539 15.720620 12.664824 -9.306363 -0.362957 14.507853 10.184656 -8.142515 -6.360033 13.173553 11.744920 -5.335850 -2.669840 12.037468 11.905970 -1.162715 -1.340377 11.400192 9.603645 -6.033511 -1.153745 10.687634 9.820236 -4.214749 -0.156130 10.765874 8.830809 -5.947473 -1.596380 9.998008 9.060877 -3.770721 -1.908486 10.647401 7.320719 -6.443269 -4.272997 9.769657 8.575953 -4.528944 -1.178091 9.726794 9.184681 -2.947534 -1.250682 8.962761 7.351788 -4.951365 -1.329011 9.045572 5.860114 -5.534487 -4.104985 7.799853 6.898966 -3.384279 -1.337398 7.589919 7.217942 -2.322251 -0.339617 6.618104 6.475303 -1.041749 -0.885727 6.445922 5.841820 -2.608860 -0.785435 6.303173 5.880459 -2.012818 -1.048216 6.115631 5.616018 -2.389849 -0.387172 6.016768 5.741394 -1.726236 -0.507951 6.582354 3.213797 -4.717912 -3.277223 5.111702 5.041956 -0.749910 -0.381860 4.543345 4.468598 -0.692640 -0.440309 4.549988 4.033710 -1.856231 -0.992964 4.491254 3.125853 -2.687415 -1.782752 4.198073 2.618282 -2.850502 -1.625747 3.552185 2.808232 -2.172750 0.104925 3.797282 2.665923 -2.336805 -1.360715 3.882375 2.666025 -2.036456 -1.953969 3.085772 2.756250 -1.275881 -0.545163 3.055829 1.976014 -2.128738 -0.949700 3.033531 2.217443 -1.842004 -0.944604 3.127451 2.226434 -1.816478 -1.234647 2.779321 2.721802 -0.370564 -0.423200 3.759017 2.410880 -1.294332 -2.577319 2.813013 1.806992 -2.005503 -0.791062 2.800653 2.178456 -1.355162 -1.123176 2.481514 2.173129 -1.088288 -0.50105 2.400734 2.313423 -0.617865 -0.172744 2.395828 2.278410 -0.73304 -0.107203 2.409425 2.258392 -0.777159 -0.317829 2.358977 2.272147 -0.592347 0.226370 2.375695 2.239820 -0.533427 -0.585310 2.162638 2.148124 -0.213261 -0.130732 2.099411 1.46773 -1.411818 -0.509966 1.727220 1.635701 -0.544216 -0.107705 1.541837 1.498864 -0.149107 -0.329293 1.610131 1.107682 -0.602702 -1.001155 1.256446 1.116295 -0.575927 -0.029164 1.286798 0.692060 -0.986721 -0.450870 1.073181 0.527123 -0.928199 -0.110933 1.070529 0.900912 -0.571988 -0.084969 0.997909 0.895759 -0.437355 -0.046468 0.903666 0.737234 -0.346682 -0.391039 0.739323 0.653897 -0.341555 0.048551 0.710355 0.478017 -0.473676 -0.227451 0.642361 0.465885 -0.436092 -0.073507 0.706375 0.309000 -0.541972 -0.331286 0.573909 0.555006 0.001055 -0.146080 0.537981 0.472248 -0.249393 -0.064873 0.484754 0.408577 -0.260669 -0.010134 0.350200 0.182170 -0.299083 -0.001904 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1
9 151.784470 0.949546 131.392471 75.984489 106.406952 0.097951 92.315750 52.917225 73.209137 1.746257 63.050304 37.164330 73.091263 1.297367 61.928951 38.800182 53.414776 0.531225 45.820644 27.446762 35.558651 0.306147 30.661337 18.005730 27.954166 -0.050373 23.910858 14.481151 14.535252 -0.025319 12.635176 7.185069 14.017663 0.100577 11.907260 7.396075 16.027166 0.939310 11.593787 11.025963 12.076696 0.419338 10.127374 6.565596 14.812226 0.261285 9.948937 10.970526 9.939997 0.096975 8.514777 5.127642 9.104223 -0.080639 7.039525 5.772820 7.128007 0.364237 6.171385 3.548216 8.472843 0.282425 5.559115 6.387922 6.245513 0.174957 5.436501 3.069250 5.853168 0.487733 4.812369 3.295876 6.324660 -0.116454 4.811591 4.103212 4.871553 0.481108 4.298071 2.242130 5.296984 0.249718 4.235509 3.171141 5.364757 -0.288473 3.970162 3.596556 5.233563 -0.014002 3.862339 3.531618 4.273739 -0.099422 3.496274 2.455816 3.384312 1.009371 2.485349 2.063439 4.170475 -0.155990 2.602640 3.254965 3.561823 0.072464 2.507604 2.528488 3.723295 0.337383 2.445301 2.787400 2.744171 0.090100 2.276320 1.529942 3.109154 0.366565 2.134917 2.230381 1.902180 -0.438700 1.833718 -0.251609 2.648119 -0.254911 1.761903 1.960421 1.751961 -0.780244 1.544798 0.272369 2.358303 0.538362 1.561525 1.683270 1.904660 1.039524 1.256800 0.983652 1.424168 0.096391 1.329254 0.502043 1.408695 0.064821 0.955400 1.033165 0.923758 0.337149 0.717163 0.474696 0.904179 0.380832 0.520913 0.633369 0.574015 0.301523 0.423995 0.242499 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

This looks like the format we want: we have a matrix of numerical features encoded in the 4-vectors, along with a target denoted by the is_signal_new column.

Create a Learner#

We can now create the Learner for this data. fastai provides various application-specific learner classes, each of which come with a set of good defaults for training. In our case, we’ll use the tabular_learner class:

learn = tabular_learner(
    dls, layers=[200, 200, 50, 50], metrics=[accuracy, RocAucBinary()]
)

By default, tabular_learner creates a neural network with two hidden layers and 200 and 100 activations each. This works great for small datasets, but since our dataset is quite large, we’ve increased the depth of the network by adding two more layers. This also matches the architecture chosen in Section 3.2.2 of The Machine Learning Landscape of Top Taggers review that we’ll compare to later.

We’ve also provided two common classification metrics to track during training: accuracy and the Area Under the ROC Curve (ROC AUC). We’ll look at ROC AUC in more detail later, so for now let’s take a look at our network with the summary() method:

learn.summary()
TabularModel (Input shape: 1024 x 0)
============================================================================
Layer (type)         Output Shape         Param #    Trainable 
============================================================================
                     1024 x 800          
BatchNorm1d                               1600       True      
____________________________________________________________________________
                     1024 x 200          
Linear                                    160000     True      
ReLU                                                           
BatchNorm1d                               400        True      
Linear                                    40000      True      
ReLU                                                           
BatchNorm1d                               400        True      
____________________________________________________________________________
                     1024 x 50           
Linear                                    10000      True      
ReLU                                                           
BatchNorm1d                               100        True      
Linear                                    2500       True      
ReLU                                                           
BatchNorm1d                               100        True      
____________________________________________________________________________
                     1024 x 2            
Linear                                    102        True      
____________________________________________________________________________

Total params: 215,202
Total trainable params: 215,202
Total non-trainable params: 0

Optimizer used: <function Adam at 0x7faa1ad5e790>
Loss function: FlattenedLoss of CrossEntropyLoss()

Callbacks:
  - TrainEvalCallback
  - Recorder
  - ProgressCallback

Here we can see that this particular network has around 215,000 parameters - although this sounds like a lot, it’s actually a very small model by modern standards (e.g. in natural language processing, some models have hundreds of billions of parameters!).

Find a good learning rate#

The learning rate is one of the most important hyperparameters involved in training neural networks, so it’s important to make sure you’ve picked a good one. We’ll see in the next lesson exactly how this parameter impacts training, but for now it is enough to know that:

  • If our learning rate is too low, it will take a long time to train the model and there is a good chance of overfitting.

  • If our learning rate is too high, the training process can diverge.

To handle these two extremes, fastai provides a learning rate finder that tracks the loss as we increase the learning rate. You can see this in action by using the lr_find() method of any Learner:

learn.lr_find()
SuggestedLRs(valley=0.0006918309954926372)
_images/lecture01_44_3.png

From this curve we can see that the loss hits a minimum around a learning rate of \(3 \times 10^{-1}\), so we should select a learning rate lower than this point. The lr_find() method provides a handy heuristic to pick the learning rate 1-2 orders of magnitude less than the minimum, as indicated by the orange dot.

Train your model#

In the above learning rate plot, it appears a learning rate of around \(10^{-3}\) would be good, so let’s choose that and train our models for 3 epochs:

learn.fit_one_cycle(n_epoch=3, lr_max=1e-3)
epoch train_loss valid_loss accuracy roc_auc_score time
0 0.512565 0.511615 0.732775 0.809289 00:20
1 0.419058 0.404574 0.810632 0.891700 00:20
2 0.381482 0.372323 0.830776 0.907655 00:20

Once the model is trained, we can view the results in various ways. A simple approach is to use the show_results() method to compare the model errors:

learn.show_results()
E_0 PX_0 PY_0 PZ_0 E_1 PX_1 PY_1 PZ_1 E_2 PX_2 PY_2 PZ_2 E_3 PX_3 PY_3 PZ_3 E_4 PX_4 PY_4 PZ_4 E_5 PX_5 PY_5 PZ_5 E_6 PX_6 PY_6 PZ_6 E_7 PX_7 PY_7 PZ_7 E_8 PX_8 PY_8 PZ_8 E_9 PX_9 PY_9 PZ_9 E_10 PX_10 PY_10 PZ_10 E_11 PX_11 PY_11 PZ_11 E_12 PX_12 PY_12 PZ_12 E_13 PX_13 PY_13 PZ_13 E_14 PX_14 PY_14 PZ_14 E_15 PX_15 PY_15 PZ_15 E_16 PX_16 PY_16 PZ_16 E_17 PX_17 PY_17 PZ_17 E_18 PX_18 PY_18 PZ_18 E_19 PX_19 PY_19 PZ_19 E_20 PX_20 PY_20 PZ_20 E_21 PX_21 PY_21 PZ_21 E_22 PX_22 PY_22 PZ_22 E_23 PX_23 PY_23 PZ_23 E_24 PX_24 PY_24 PZ_24 E_25 PX_25 PY_25 PZ_25 E_26 PX_26 PY_26 PZ_26 E_27 PX_27 PY_27 PZ_27 E_28 PX_28 PY_28 PZ_28 E_29 PX_29 PY_29 PZ_29 E_30 PX_30 PY_30 PZ_30 E_31 PX_31 PY_31 PZ_31 E_32 PX_32 PY_32 PZ_32 E_33 PX_33 PY_33 PZ_33 E_34 PX_34 PY_34 PZ_34 E_35 PX_35 PY_35 PZ_35 E_36 PX_36 PY_36 PZ_36 E_37 PX_37 PY_37 PZ_37 E_38 PX_38 PY_38 PZ_38 E_39 PX_39 PY_39 PZ_39 E_40 PX_40 PY_40 PZ_40 E_41 PX_41 PY_41 PZ_41 E_42 PX_42 PY_42 PZ_42 E_43 PX_43 PY_43 PZ_43 E_44 PX_44 PY_44 PZ_44 E_45 PX_45 PY_45 PZ_45 E_46 PX_46 PY_46 PZ_46 E_47 PX_47 PY_47 PZ_47 E_48 PX_48 PY_48 PZ_48 E_49 PX_49 PY_49 PZ_49 E_50 PX_50 PY_50 PZ_50 E_51 PX_51 PY_51 PZ_51 E_52 PX_52 PY_52 PZ_52 E_53 PX_53 PY_53 PZ_53 E_54 PX_54 PY_54 PZ_54 E_55 PX_55 PY_55 PZ_55 E_56 PX_56 PY_56 PZ_56 E_57 PX_57 PY_57 PZ_57 E_58 PX_58 PY_58 PZ_58 E_59 PX_59 PY_59 PZ_59 E_60 PX_60 PY_60 PZ_60 E_61 PX_61 PY_61 PZ_61 E_62 PX_62 PY_62 PZ_62 E_63 PX_63 PY_63 PZ_63 E_64 PX_64 PY_64 PZ_64 E_65 PX_65 PY_65 PZ_65 E_66 PX_66 PY_66 PZ_66 E_67 PX_67 PY_67 PZ_67 E_68 PX_68 PY_68 PZ_68 E_69 PX_69 PY_69 PZ_69 E_70 PX_70 PY_70 PZ_70 E_71 PX_71 PY_71 PZ_71 E_72 PX_72 PY_72 PZ_72 E_73 PX_73 PY_73 PZ_73 E_74 PX_74 PY_74 PZ_74 E_75 PX_75 PY_75 PZ_75 E_76 PX_76 PY_76 PZ_76 E_77 PX_77 PY_77 PZ_77 E_78 PX_78 PY_78 PZ_78 E_79 PX_79 PY_79 PZ_79 E_80 PX_80 PY_80 PZ_80 E_81 PX_81 PY_81 PZ_81 E_82 PX_82 PY_82 PZ_82 E_83 PX_83 PY_83 PZ_83 E_84 PX_84 PY_84 PZ_84 E_85 PX_85 PY_85 PZ_85 E_86 PX_86 PY_86 PZ_86 E_87 PX_87 PY_87 PZ_87 E_88 PX_88 PY_88 PZ_88 E_89 PX_89 PY_89 PZ_89 E_90 PX_90 PY_90 PZ_90 E_91 PX_91 PY_91 PZ_91 E_92 PX_92 PY_92 PZ_92 E_93 PX_93 PY_93 PZ_93 E_94 PX_94 PY_94 PZ_94 E_95 PX_95 PY_95 PZ_95 E_96 PX_96 PY_96 PZ_96 E_97 PX_97 PY_97 PZ_97 E_98 PX_98 PY_98 PZ_98 E_99 PX_99 PY_99 PZ_99 E_100 PX_100 PY_100 PZ_100 E_101 PX_101 PY_101 PZ_101 E_102 PX_102 PY_102 PZ_102 E_103 PX_103 PY_103 PZ_103 E_104 PX_104 PY_104 PZ_104 E_105 PX_105 PY_105 PZ_105 E_106 PX_106 PY_106 PZ_106 E_107 PX_107 PY_107 PZ_107 E_108 PX_108 PY_108 PZ_108 E_109 PX_109 PY_109 PZ_109 E_110 PX_110 PY_110 PZ_110 E_111 PX_111 PY_111 PZ_111 E_112 PX_112 PY_112 PZ_112 E_113 PX_113 PY_113 PZ_113 E_114 PX_114 PY_114 PZ_114 E_115 PX_115 PY_115 PZ_115 E_116 PX_116 PY_116 PZ_116 E_117 PX_117 PY_117 PZ_117 E_118 PX_118 PY_118 PZ_118 E_119 PX_119 PY_119 PZ_119 E_120 PX_120 PY_120 PZ_120 E_121 PX_121 PY_121 PZ_121 E_122 PX_122 PY_122 PZ_122 E_123 PX_123 PY_123 PZ_123 E_124 PX_124 PY_124 PZ_124 E_125 PX_125 PY_125 PZ_125 E_126 PX_126 PY_126 PZ_126 E_127 PX_127 PY_127 PZ_127 E_128 PX_128 PY_128 PZ_128 E_129 PX_129 PY_129 PZ_129 E_130 PX_130 PY_130 PZ_130 E_131 PX_131 PY_131 PZ_131 E_132 PX_132 PY_132 PZ_132 E_133 PX_133 PY_133 PZ_133 E_134 PX_134 PY_134 PZ_134 E_135 PX_135 PY_135 PZ_135 E_136 PX_136 PY_136 PZ_136 E_137 PX_137 PY_137 PZ_137 E_138 PX_138 PY_138 PZ_138 E_139 PX_139 PY_139 PZ_139 E_140 PX_140 PY_140 PZ_140 E_141 PX_141 PY_141 PZ_141 E_142 PX_142 PY_142 PZ_142 E_143 PX_143 PY_143 PZ_143 E_144 PX_144 PY_144 PZ_144 E_145 PX_145 PY_145 PZ_145 E_146 PX_146 PY_146 PZ_146 E_147 PX_147 PY_147 PZ_147 E_148 PX_148 PY_148 PZ_148 E_149 PX_149 PY_149 PZ_149 E_150 PX_150 PY_150 PZ_150 E_151 PX_151 PY_151 PZ_151 E_152 PX_152 PY_152 PZ_152 E_153 PX_153 PY_153 PZ_153 E_154 PX_154 PY_154 PZ_154 E_155 PX_155 PY_155 PZ_155 E_156 PX_156 PY_156 PZ_156 E_157 PX_157 PY_157 PZ_157 E_158 PX_158 PY_158 PZ_158 E_159 PX_159 PY_159 PZ_159 E_160 PX_160 PY_160 PZ_160 E_161 PX_161 PY_161 PZ_161 E_162 PX_162 PY_162 PZ_162 E_163 PX_163 PY_163 PZ_163 E_164 PX_164 PY_164 PZ_164 E_165 PX_165 PY_165 PZ_165 E_166 PX_166 PY_166 PZ_166 E_167 PX_167 PY_167 PZ_167 E_168 PX_168 PY_168 PZ_168 E_169 PX_169 PY_169 PZ_169 E_170 PX_170 PY_170 PZ_170 E_171 PX_171 PY_171 PZ_171 E_172 PX_172 PY_172 PZ_172 E_173 PX_173 PY_173 PZ_173 E_174 PX_174 PY_174 PZ_174 E_175 PX_175 PY_175 PZ_175 E_176 PX_176 PY_176 PZ_176 E_177 PX_177 PY_177 PZ_177 E_178 PX_178 PY_178 PZ_178 E_179 PX_179 PY_179 PZ_179 E_180 PX_180 PY_180 PZ_180 E_181 PX_181 PY_181 PZ_181 E_182 PX_182 PY_182 PZ_182 E_183 PX_183 PY_183 PZ_183 E_184 PX_184 PY_184 PZ_184 E_185 PX_185 PY_185 PZ_185 E_186 PX_186 PY_186 PZ_186 E_187 PX_187 PY_187 PZ_187 E_188 PX_188 PY_188 PZ_188 E_189 PX_189 PY_189 PZ_189 E_190 PX_190 PY_190 PZ_190 E_191 PX_191 PY_191 PZ_191 E_192 PX_192 PY_192 PZ_192 E_193 PX_193 PY_193 PZ_193 E_194 PX_194 PY_194 PZ_194 E_195 PX_195 PY_195 PZ_195 E_196 PX_196 PY_196 PZ_196 E_197 PX_197 PY_197 PZ_197 E_198 PX_198 PY_198 PZ_198 E_199 PX_199 PY_199 PZ_199 is_signal_new is_signal_new_pred
0 55.373371 15.447829 -53.108967 2.648058 39.483627 9.879107 -38.208023 1.227653 39.344952 28.682394 -26.352501 5.557986 34.630009 25.825630 -22.191050 6.311225 31.741671 22.453880 -22.047646 4.154309 28.607065 20.475050 -19.632759 3.700181 31.330889 12.412865 -21.484344 19.130299 22.874287 16.306553 -15.693566 3.322846 21.684135 11.369366 -17.951180 4.323710 20.443676 5.001358 -19.806828 0.787326 18.971832 14.148410 -12.157228 3.457565 22.302622 7.657867 -16.329651 13.118936 22.506207 8.257535 -15.369576 14.216842 17.488396 12.562215 -11.999881 2.009378 17.286680 12.460367 -11.671321 2.710874 15.806683 9.301882 -12.139855 3.993762 16.524759 6.189622 -11.225109 10.428478 10.510235 7.613899 -7.113340 1.376215 10.505521 6.357656 -7.655622 3.367139 8.879970 2.345350 -8.521793 0.855708 7.796289 2.116827 -7.502737 0.100512 7.792163 5.807485 -5.111705 0.928112 8.909110 3.027786 -6.752189 4.961118 7.138719 1.478972 -6.924917 -0.905249 7.019392 1.748098 -6.797865 0.071055 6.291604 4.547145 -3.957447 -1.801769 5.986259 4.363632 -4.026358 0.763186 7.380098 2.547143 -5.351652 4.397468 5.743817 0.075045 -5.278041 2.264527 6.931075 2.999568 -4.256332 4.574497 7.232418 1.939481 -4.349987 5.442784 5.510406 2.592241 -3.626578 3.239258 4.339673 2.618227 -3.349735 -0.870016 4.239345 3.116243 -2.873728 -0.052541 5.080171 1.750966 -3.859296 2.801444 5.380709 2.247479 -3.541767 3.369979 5.361376 1.817439 -3.761746 3.360140 4.103991 2.657733 -2.794918 1.402720 3.818110 2.906654 -2.466961 -0.208396 4.390255 1.492041 -3.327362 2.444753 3.485384 2.404282 -2.507123 -0.285769 3.187455 1.371662 -2.873592 -0.144521 3.490748 1.988637 -2.472357 1.455369 4.097678 2.209598 -2.229547 2.633963 3.930950 2.172712 -2.055131 2.551103 3.562002 1.982498 -2.168933 2.013279 3.120360 1.434136 -2.554029 -1.075563 2.888219 1.857622 -2.140393 -0.556570 2.678831 2.034264 -1.711286 0.330761 2.630311 1.963093 -1.706802 0.389398 3.244133 1.065371 -2.351692 1.964417 2.638533 1.724679 -1.895686 -0.627464 2.543895 2.038069 -1.515647 0.143134 3.280566 1.412071 -1.966430 2.213893 2.566380 1.855283 -1.529425 -0.897268 2.289888 1.568115 -1.578431 0.541439 2.143133 0.785485 -1.959918 0.367092 2.265625 0.370917 -2.031101 0.932795 2.155324 1.487690 -1.398882 -0.689440 2.088751 0.885557 -1.750641 0.716886 2.567099 0.351094 -1.901725 1.688246 2.626564 1.599039 -0.941216 1.859038 2.267673 0.917841 -1.602557 1.315948 1.809489 0.863159 -1.339359 0.857510 1.555773 0.946619 -1.225913 0.146564 1.840218 0.865688 -1.211108 1.081761 1.502715 0.671494 -1.305816 0.319518 2.117384 0.982598 -1.066445 1.542891 2.147986 0.576015 -1.291921 1.616475 1.620426 0.445077 -1.329756 0.812058 1.287042 1.104052 -0.659054 0.056528 1.346352 1.007555 -0.781745 0.431708 1.204614 0.038337 -1.201698 0.074481 1.388158 0.423047 -1.119640 0.703149 1.290550 0.594335 -0.993044 0.571094 1.259902 0.842324 -0.746376 0.566362 1.240312 0.823487 -0.695624 0.613474 1.114801 0.616407 -0.836268 0.404327 1.050791 0.398882 -0.922332 0.307179 1.127198 0.645933 -0.747799 -0.542350 1.396213 0.701842 -0.656147 1.013065 1.034949 0.493690 -0.766056 0.490459 0.911330 0.421269 -0.712346 -0.381599 0.814269 0.523715 -0.603436 -0.156913 0.954917 0.557657 -0.571621 0.523579 0.760974 0.312979 -0.693473 0.014826 0.846925 0.272219 -0.697219 0.396314 0.644899 0.546843 -0.334867 -0.068710 0.649957 0.325505 -0.550379 -0.116504 0.676266 0.024148 -0.598012 0.314857 0.570777 0.153775 -0.548854 -0.029968 0.518796 0.181761 -0.406142 0.266760 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
1 85.271927 18.985689 80.161728 -22.021387 35.494274 14.089288 27.902519 16.816210 35.372967 5.981579 24.812439 24.491024 25.733261 9.897063 22.975033 6.032969 28.182434 10.784863 21.934576 14.028923 18.519686 4.554176 17.492123 -4.032852 17.722200 8.807404 15.307701 1.476581 16.917294 6.332823 15.572810 1.891498 24.142254 4.088970 16.139261 17.482935 18.184538 7.623066 14.188622 8.440929 14.736913 7.184424 12.294654 3.795013 14.942549 4.855879 12.715952 6.164801 13.729703 6.076223 11.742292 3.701733 12.704572 6.494713 10.371592 3.413933 15.580447 2.845028 9.984985 11.617065 9.553916 2.127168 8.981367 -2.467289 9.804935 3.186309 8.343896 4.045191 8.694020 3.851479 7.770153 0.613865 8.243057 5.284256 5.934836 2.191428 8.779967 3.985839 6.611471 4.182028 7.933362 4.407343 5.780066 3.178741 7.105115 3.368708 5.879133 2.137819 5.970509 2.737379 5.242725 0.817049 6.051137 2.366136 5.302313 1.703857 5.901711 3.073598 4.855549 1.344184 6.272639 4.037410 3.992417 2.665695 6.232912 5.105202 2.319947 2.721020 7.341536 1.614292 5.363025 4.746595 6.145093 4.572462 2.929341 2.876407 5.856678 2.805473 4.596078 2.303491 5.343754 2.587870 4.635347 0.610072 5.468257 2.527618 4.632632 1.432377 6.032536 4.560538 2.457248 3.091102 5.207212 1.688362 4.861693 -0.792737 5.531978 2.484682 4.359250 2.329393 5.121120 1.059114 4.798028 -1.443289 4.850181 2.497190 4.136650 0.420032 6.786995 1.429670 4.304793 5.048573 5.556354 1.293891 4.277099 3.302323 4.906525 3.403742 2.785759 2.174414 4.229742 3.379346 2.434534 -0.737415 4.091139 1.765958 3.664821 0.433472 4.395818 2.131417 3.452122 1.692080 3.884586 1.596526 3.251563 1.403015 4.026021 3.060858 1.747410 1.945906 3.470460 0.785172 3.339807 -0.522771 3.551084 2.793807 1.822081 1.218547 3.460228 2.306340 2.393177 0.962641 3.458021 1.377673 2.960962 1.136938 3.495999 2.029963 2.312546 1.659335 3.475843 2.760226 1.258267 1.696881 3.245294 1.344248 2.667978 1.267608 2.962028 1.531076 2.519693 -0.283835 3.051412 1.687248 2.174260 1.317916 2.512844 1.686045 1.779321 0.552860 2.689137 1.730874 1.711585 1.142807 2.823017 0.768076 2.290710 1.460183 2.411201 1.448410 1.926455 0.069062 3.871706 0.444843 2.284927 3.093757 2.409937 1.518276 1.763376 0.627008 2.762771 0.450254 2.190216 1.622692 2.339598 1.109260 1.935902 0.703949 2.320295 1.870794 1.161824 0.730795 2.191975 1.253329 1.720387 0.523628 2.147218 1.241978 1.723932 0.309991 2.067152 0.668318 1.797967 0.770573 2.486211 0.976978 1.561115 1.670233 1.853210 0.693731 1.705928 0.207205 1.954812 1.041473 1.383678 0.906673 1.887233 0.418697 1.644984 -0.824846 1.756695 0.891352 1.399602 0.576703 2.784866 0.735156 1.483188 2.239459 2.572018 0.816908 1.401982 1.995592 1.613443 0.533463 1.495458 0.286742 1.677924 0.851383 1.336842 0.550843 1.746369 0.290088 1.536734 0.777240 2.353512 0.480571 1.473505 1.771117 2.081337 0.122754 1.513445 1.423510 1.590024 0.158424 1.482136 0.553488 1.504820 0.578757 1.343526 0.352794 1.503309 0.523185 1.351987 0.397927 1.831516 0.319156 1.346600 1.199692 1.556591 0.420901 1.305272 0.736263 1.166046 -0.175975 1.152045 0.038587 1.352714 1.022639 0.551004 0.693138 1.228763 0.139722 1.110641 -0.506768 1.227743 0.433013 0.974023 0.609207 1.074988 0.600248 0.867498 0.206761 1.761592 0.317861 0.975899 1.431710 1.121050 0.744424 0.605544 0.579571 0.931303 0.605460 0.700810 0.098024 0.870360 0.526842 0.679842 0.133338 1.094996 0.182765 0.839526 0.67883 0.869425 0.694774 0.499537 0.153792 0.80607 0.43132 0.671326 -0.114161 0.757981 0.123427 0.695199 -0.27568 0.774677 0.211287 0.639215 0.383257 0.735012 0.439176 0.507381 0.299884 0.919752 0.23057 0.625046 0.634112 1.091753 0.43259 0.506562 0.864977 0.822304 0.41847 0.422452 0.56798 0.548454 0.200325 0.501501 -0.095753 0.662222 0.247508 0.440059 0.428516 0.722328 0.219603 0.416881 0.547487 0.45947 0.192403 0.385645 0.159286 0.381374 0.307673 0.205482 0.092526 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
2 516.210022 65.679703 -247.258301 -448.355103 239.182953 31.903074 -113.941299 -207.865479 179.469437 23.711529 -86.030853 -155.710419 31.219574 4.289379 -15.344496 -26.847895 37.876450 -1.978928 -11.897355 -35.904907 20.399145 -2.294662 -6.365724 -19.244148 12.406221 1.862238 -6.106205 -10.637700 9.219143 3.883240 -4.890146 -6.782294 19.560913 -0.260901 -5.983164 -18.621572 11.251606 2.552148 -5.037094 -9.732054 18.354359 -0.930482 -5.475431 -17.493895 16.252151 -2.212914 -5.068512 -15.282200 6.916037 2.132614 -4.821438 -4.476299 9.780379 0.747449 -5.211164 -8.242627 9.660797 1.918161 -4.794651 -8.164741 9.848786 1.837722 -4.671026 -8.473658 16.540770 -0.054699 -4.790403 -15.831807 14.726268 -0.474498 -4.746349 -13.932336 7.632535 1.056448 -4.623791 -5.979972 16.599749 -1.347675 -4.512690 -15.917634 12.049094 -0.836061 -4.101630 -11.298598 7.719193 1.126171 -3.958953 -6.530267 10.318196 -0.681848 -3.737458 -9.593314 6.383173 0.875908 -3.390751 -5.336711 5.925990 0.664168 -3.116205 -4.996550 9.041269 -0.083944 -3.101111 -8.492386 8.563301 -0.485526 -3.019691 -7.998491 4.828800 0.646107 -2.672212 -3.969778 3.304960 1.389704 -2.079199 -2.160651 4.622041 0.501523 -2.295092 -3.980489 5.623734 0.022133 -2.192067 -5.178874 4.362431 1.123515 -1.728674 -3.844503 7.586563 -0.431333 -1.987274 -7.308942 3.077971 0.304442 -1.948014 -2.363570 3.152456 0.365215 -1.881816 -2.502672 2.837118 0.741525 -1.701359 -2.145869 5.856131 0.142115 -1.631506 -5.622478 2.703051 0.351616 -1.503992 -2.218301 4.142230 0.702753 -1.246833 -3.887109 2.733151 0.492921 -1.205528 -2.402883 1.912597 0.737363 -1.061550 -1.409764 3.952762 -0.013051 -1.147835 -3.782410 3.149440 -0.272640 -1.041096 -2.959858 1.572127 0.540256 -0.918551 -1.155842 1.289259 0.397553 -0.898793 -0.834453 1.004981 0.386808 -0.679457 -0.631431 2.614485 0.011527 -0.770739 -2.498271 2.090822 -0.224414 -0.682523 -1.963501 1.025700 0.101452 -0.649154 -0.787633 0.876280 0.130027 -0.486805 -0.716924 0.851218 0.168147 -0.416703 -0.722950 1.414109 -0.082354 -0.420374 -1.347668 0.551654 0.105977 -0.407282 -0.356668 1.229190 0.026430 -0.400792 -1.161712 0.933148 0.246668 -0.309570 -0.845036 0.507530 0.109217 -0.332749 -0.367337 0.749032 0.160857 -0.235663 -0.692558 0.603806 0.142805 -0.159186 -0.564666 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
3 179.563461 -78.816872 -144.127274 72.513924 57.747158 -21.012482 -47.169498 25.850504 57.541145 -21.817780 -46.437847 26.047922 31.984177 -10.522673 -23.974773 18.370390 28.503929 -19.214449 -16.230444 13.410877 23.305548 -8.522502 -19.122160 10.240045 20.502831 -13.593023 -12.078649 9.471115 19.289295 -10.553767 -13.188070 9.315028 17.299089 -7.465109 -14.635800 5.415163 18.352409 -12.133499 -11.023665 8.250330 15.409149 -5.652246 -13.209612 5.567778 14.739727 -9.908389 -8.232552 7.162993 13.606773 -6.493807 -10.264329 6.133376 15.646438 -4.733969 -11.113035 9.944899 13.769272 -4.598180 -10.381672 7.789125 11.078214 -4.109962 -8.905683 5.150132 10.438019 -6.905755 -6.393700 4.514797 10.234579 -4.340665 -7.756525 5.073615 9.574831 -4.906097 -6.998511 4.316070 8.875442 -5.893004 -5.258232 4.049315 8.183035 -3.070297 -6.941494 3.057940 8.138783 -5.618798 -4.768335 3.454253 8.431035 -4.407260 -5.768741 4.287196 7.438922 -2.728679 -6.377074 2.687901 7.635469 -2.623368 -6.148635 3.689528 9.050841 -4.024401 -5.112267 6.291792 6.475564 -2.130436 -4.853968 3.719296 6.063044 -3.251853 -4.128994 3.022806 5.670615 -3.004871 -4.072957 2.556881 6.102602 -2.382156 -4.397341 3.497209 5.423337 -1.995948 -4.519047 2.237631 5.209931 -2.486430 -3.930134 2.348423 5.429140 -1.997184 -4.083933 2.967878 5.431569 -2.630232 -3.229809 3.485993 4.644033 -1.483754 -3.725301 2.342575 4.351503 -3.004162 -2.549451 1.846860 4.217671 -3.204675 -2.168622 1.678058 4.105029 -2.240312 -2.686709 2.147989 4.409565 -1.903473 -2.643459 2.972067 3.114978 -2.337030 -1.513010 1.397204 3.706148 -2.089397 -1.802283 2.474213 2.785452 -0.510653 -2.401492 1.315603 2.668029 -1.756768 -1.705230 1.060346 4.436053 -1.182912 -2.099723 3.724305 2.730992 -1.515908 -1.776266 1.416057 2.537111 -1.800472 -1.239602 1.287873 2.233770 -0.767471 -1.798794 1.079378 2.209532 -0.555434 -1.733758 1.252041 1.863158 -1.251323 -0.999087 0.952561 1.604812 -0.760796 -1.217320 0.717455 1.521268 -0.278892 -1.311569 0.718513 1.160954 -0.706225 -0.797743 0.461159 1.215907 -0.677310 -0.713421 0.714639 0.975926 -0.487160 -0.761194 0.368361 1.007666 -0.732924 -0.358831 0.591146 0.891673 -0.404192 -0.692181 0.390633 0.998600 -0.336022 -0.683391 0.645963 0.968041 -0.356868 -0.591964 0.677737 0.501999 -0.081097 -0.487034 -0.090685 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
4 329.562469 95.270767 -126.800941 288.888245 319.419220 100.912178 -120.495155 278.076050 77.337204 22.194319 -29.571247 67.926407 61.838978 18.147085 -23.431585 54.274334 49.351467 13.173972 -22.642370 41.825073 47.120506 12.578436 -21.618811 39.934349 46.389317 14.740288 -16.279430 40.861629 43.341885 12.493152 -16.581955 38.045746 31.633617 10.231354 -12.024124 27.412142 30.532423 8.062800 -11.625650 27.056688 26.103477 8.533171 -10.292779 22.419527 25.247374 7.628972 -9.912628 21.930992 17.856659 4.219609 -6.807502 15.959734 13.716174 4.209394 -5.481440 11.847711 11.635141 3.570374 -4.609353 10.068903 9.181920 4.273754 -2.714597 7.659873 8.440472 2.724650 -3.251005 7.297178 6.138549 2.320958 -2.505951 5.100505 6.732611 2.486831 -1.331028 6.113271 3.722566 2.305616 -0.828641 2.802675 4.201150 1.409204 -1.568503 3.633677 2.803007 1.142459 -1.012736 2.350745 4.100997 0.869796 -1.231139 3.813912 2.151438 0.791965 -0.791666 1.837048 1.975119 0.610799 -0.920475 1.637298 1.900072 0.872769 -0.254539 1.668460 1.301327 0.735834 -0.496105 0.951777 1.059441 0.427947 -0.446137 0.860372 1.012077 0.260065 -0.557012 0.803993 1.630392 0.172932 -0.532861 1.531121 0.824098 0.486938 -0.220189 0.627333 0.712525 0.349196 -0.376336 0.494091 0.904629 0.301461 -0.269676 0.809166 0.644888 0.158176 -0.218105 0.585911 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 611.084106 -305.877930 129.185684 513.004456 284.789490 -140.946121 61.773891 239.631439 76.014404 -37.440628 16.435490 64.080139 22.579498 -11.267144 5.153885 18.876511 18.358086 -9.069336 3.679590 15.531487 11.038916 -5.771944 2.414210 9.094719 5.687854 -2.857658 0.943238 4.826570 4.331696 -2.132928 0.182841 3.765737 5.723002 -1.590581 0.922244 5.419619 3.527958 -1.545158 0.410306 3.144937 2.790856 -1.413644 0.731161 2.292573 2.203614 -1.009327 0.244803 1.943514 1.776436 -0.946788 0.292658 1.474336 1.433138 -0.883230 0.212052 1.108524 2.893339 -0.881270 0.169735 2.750629 1.782020 -0.816223 0.197968 1.571682 1.645752 -0.726600 -0.050745 1.475797 1.530543 -0.678641 0.133411 1.365361 0.820616 -0.492704 0.282692 0.592233 1.151004 -0.297730 0.427764 1.026248 1.248217 -0.497593 -0.094049 1.140878 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 102.676163 -97.163437 -14.328404 29.939236 64.570015 -61.093929 -9.346408 18.693928 65.386238 -60.351425 -8.609890 23.641819 56.462463 -54.785923 -5.263214 12.602011 47.432133 -45.001816 -7.120251 13.188850 40.683399 -38.570587 -5.872537 11.530916 28.003189 -26.391380 -4.377386 8.277205 26.152256 -24.843985 -3.721982 7.270751 23.080246 -21.833197 -3.181887 6.773834 22.892691 -21.534258 -3.309304 7.028485 21.047714 -19.981674 -2.704503 6.035285 13.292037 -12.593484 -1.933046 3.787579 12.791776 -12.218965 -1.924688 3.259145 7.018115 -6.534798 -2.008228 1.586625 6.743606 -6.232697 -1.848569 1.792343 6.210994 -5.740381 -1.045328 2.128794 6.112596 -5.376745 -2.126432 1.983113 4.986853 -3.374813 -3.165563 1.859717 4.302229 -4.220151 -0.616500 0.565178 3.806959 -3.438175 -0.578166 1.528924 3.572317 -3.229210 -0.452246 1.459153 3.641506 -2.671299 1.595279 1.892039 2.801416 -2.653493 -0.783084 0.440098 2.662709 -2.382332 -0.915795 0.758835 2.815930 -2.255222 -1.117244 1.263014 2.460618 -2.231441 -0.676693 0.785749 2.745603 -2.279052 -0.092057 1.528328 2.000568 -1.662871 -0.776164 0.796682 1.834038 -1.740878 -0.446244 0.365928 1.715279 -1.317732 -1.063943 0.271645 1.531346 -1.449036 -0.133841 0.476866 1.474029 -1.246142 -0.586768 0.524973 1.532491 -1.294766 -0.469805 0.671858 1.328893 -1.285204 -0.337899 0.005790 1.271554 -1.238967 -0.213757 -0.190049 1.742561 -0.964922 -0.765100 1.232910 1.388186 -1.225337 0.026604 0.651846 1.618137 -1.154190 -0.382735 1.067580 1.032082 -0.862739 -0.565555 -0.031960 1.025964 -0.928927 -0.315983 -0.299751 1.010365 -0.591851 -0.631354 0.521482 0.823785 -0.701112 -0.424199 -0.084371 0.544246 -0.425272 -0.337233 0.040271 0.427590 -0.415362 -0.080952 0.061274 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 257.630188 106.853798 -69.073929 224.018692 83.139183 54.075981 -27.262121 56.962166 111.417793 46.211254 -29.872526 96.881767 41.762379 26.673393 -13.681358 29.076571 34.663544 21.791115 -12.034702 24.122076 25.538147 16.182859 -8.959289 17.608044 30.153559 7.585900 -16.008104 24.401472 24.515146 11.261580 -12.848575 17.580767 22.468275 14.698792 -7.485686 15.255603 19.120033 11.736723 -6.992858 13.376284 24.139442 9.408215 -6.032071 21.396549 18.365290 4.613016 -9.457962 15.051607 14.258600 8.633021 -5.624858 9.855942 14.425040 8.865430 -5.083375 10.180630 20.804403 8.410170 -5.317484 18.270649 13.994586 7.593967 -6.303789 9.921811 21.007475 8.456771 -4.788936 18.624262 13.029757 5.821420 -6.856107 9.427588 10.091116 5.895158 -4.701034 6.706565 9.571890 5.884108 -4.098946 6.340110 9.571373 6.144860 -3.171987 6.617430 8.580808 6.470941 -1.388490 5.461618 10.252076 2.282099 -5.927240 8.047665 8.047889 4.701519 -3.749179 5.348634 8.326077 4.827573 -3.402928 5.868406 8.132969 4.453572 -3.825441 5.628222 8.798279 3.072728 -4.789514 6.710336 12.012880 4.217518 -3.521853 10.682620 7.761537 4.680856 -2.098069 5.824873 9.441773 4.063155 -2.331676 8.197631 7.229572 2.543451 -3.838978 5.573134 5.715028 4.136883 -1.597178 3.605103 6.003904 3.465700 -2.197486 4.382560 7.316044 3.797707 -0.928238 6.183874 5.193681 2.735659 -2.342006 3.742393 5.353796 1.858556 -3.058202 3.981997 4.304455 3.083871 -1.632927 2.520243 6.899963 2.732437 -1.535975 6.146874 3.176030 2.508638 -1.098781 1.608285 3.084017 2.016692 -1.410590 1.858588 3.045140 2.359873 -0.078474 1.922945 3.249019 1.177708 -1.724877 2.488761 3.297309 1.671539 -1.190321 2.580956 2.947780 1.652419 -1.175254 2.139555 3.344485 1.645264 -1.121537 2.687162 2.092230 1.878650 -0.561380 0.730036 3.207179 0.990327 -1.383898 2.718470 3.152884 1.315663 -0.959724 2.699748 2.404118 0.960115 -1.258060 1.809764 2.967598 1.304544 -0.536729 2.610885 1.521293 1.291479 -0.466002 0.655176 1.381625 1.102953 -0.681875 0.476894 2.242080 0.981484 -0.568098 1.934135 1.653730 0.920067 -0.644304 1.213743 1.700750 1.043000 -0.157132 1.334170 2.208643 0.970911 -0.399462 1.943159 2.415330 0.449469 -0.907174 2.192905 1.785409 0.838798 -0.551518 1.476460 1.050630 0.569733 -0.767990 0.435223 1.919633 0.552084 -0.779635 1.665041 1.684097 0.741616 -0.561193 1.404012 1.794403 0.864213 -0.256112 1.551587 1.520116 0.504923 -0.647644 1.279204 0.914422 0.630762 -0.426319 0.506516 0.949885 0.526892 -0.370316 0.698234 1.031610 0.440354 -0.415594 0.835217 1.149833 0.153560 -0.499332 1.024306 1.124914 0.351487 -0.290792 1.028265 0.820899 0.451697 -0.020556 0.685145 0.526363 0.289947 -0.326733 0.293657 1.276224 0.369967 -0.214223 1.202489 0.516433 0.283546 -0.275611 0.332181 0.377315 0.064522 -0.181876 0.324229 0.167024 0.057483 -0.122019 0.098510 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
8 142.923752 78.678352 99.938553 65.185890 72.991386 68.257805 24.202347 9.102827 38.014297 35.750080 12.087891 4.571796 35.611473 33.123123 11.181815 6.782530 29.437706 25.464855 7.476874 12.736403 26.011148 24.477785 8.453134 2.441799 25.178915 23.511496 8.387461 3.292090 26.343893 22.708706 7.349658 11.148897 14.659115 13.821280 4.732279 1.211350 12.022038 11.286951 3.723090 1.809071 11.740626 11.090772 3.692733 1.095822 11.710329 10.720157 4.432101 1.602043 11.045879 9.710128 2.566499 4.597603 10.035184 9.327897 3.396616 1.469095 9.884888 8.961467 2.712603 3.169369 8.882207 7.292553 1.885134 4.707286 6.543412 6.489433 -0.837826 -0.039319 6.999748 6.033854 1.952853 2.962336 6.257664 5.496066 2.890849 0.771110 7.793723 5.734364 1.738196 4.983760 4.510467 4.178370 1.598105 0.575843 4.782681 4.108604 1.113110 2.180458 4.182361 3.912849 1.477021 -0.012807 4.109838 4.077982 0.468581 -0.203135 3.711725 3.349799 1.546700 0.404313 4.168599 3.340050 1.566669 1.940832 4.268133 3.465314 1.210372 2.177971 4.612126 2.487145 2.594614 2.890294 3.607978 3.168864 1.666775 0.444598 3.494550 1.425179 3.127082 0.634120 3.491037 3.115516 0.857281 1.321350 3.215504 1.748195 2.689125 -0.227790 3.137908 2.968556 1.016842 0.013167 3.484559 2.057550 2.275903 1.651939 2.793626 2.571566 1.040875 0.328598 2.581538 1.263143 2.250417 0.066577 3.051403 1.363279 2.085111 1.762057 2.360827 1.616907 1.685841 0.342134 2.474930 1.347824 1.682887 1.215131 1.996616 1.705726 1.037443 0.026195 1.940771 1.925673 -0.095188 -0.222073 1.953383 1.835132 0.535860 -0.401062 2.335166 1.851506 0.128525 1.417182 1.739371 1.590491 0.703631 0.025517 1.747788 1.568626 0.640641 0.428663 1.702729 1.054443 1.319898 0.212849 1.675363 1.218332 1.108690 0.305474 1.422847 1.390380 -0.218373 -0.208926 1.494798 0.871027 0.889037 0.827856 1.229201 1.005900 0.556967 0.434615 1.132050 0.610936 0.893196 0.332407 1.326933 0.782299 0.727508 0.787079 1.065655 0.966104 0.292436 0.341678 1.136415 0.824682 0.569743 0.535474 0.948853 0.304282 0.863336 0.249770 1.092636 0.401995 0.816073 0.605208 0.766739 0.709495 -0.179992 0.228271 0.945731 0.669617 0.267365 0.611993 0.752638 0.693571 0.178965 -0.231072 0.839839 0.686661 -0.165872 0.454216 0.596012 0.589230 -0.042138 -0.079139 0.426369 0.416082 0.085506 -0.036812 0.523865 0.241910 0.313563 0.342919 0.521278 0.356159 0.144610 0.352093 0.358706 0.269504 0.236387 0.012588 0.299515 0.137145 0.265864 0.014722 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Here we can see that model made a handful of errors, which is expected since our accuracy is only around 82%. However, evaluating our model’s predictions on the same data it was trained on is almost always a recipe for disaster! Why? The problem is that the model may memorise the structure of the data it sees and fail to provide good predictions when shown new data. Let’s see how we can evaluate our model on examples from the test set that it has never seen.

Evaluate your model#

The learners in fastai are equipped with predict() and get_preds() methods that allow one to evaluae the model on new data. To use them, we’ll need a new DataLoader which we can create by simply passing in a DataFrame of the test events:

test_dl = learn.dls.test_dl(test_items=test_df)

Now that we have a DataLoader, it’s a simple matter to compute the predictions with the get_preds() method:

preds, targs = learn.get_preds(dl=test_dl)

Let’s take a look at the first few values of preds and targs:

preds[:5], targs[:5]
(tensor([[0.9980, 0.0020],
         [0.6680, 0.3320],
         [0.8597, 0.1403],
         [0.4682, 0.5318],
         [0.9532, 0.0468]]),
 tensor([[0],
         [0],
         [0],
         [0],
         [0]], dtype=torch.int8))

Here we can see that they are tensors. In PyTorch, a tensor is similar to the arrays that you may be familiar with in Numpy. Tensors have a rank that can be inspected by using the size() method:

preds.size(), targs.size()
(torch.Size([404000, 2]), torch.Size([404000, 1]))

In this case, we see that preds is a rank-2 tensor (i.e. a matrix), while targs is rank-1 (a vector). Note that each dimension in preds corresponds to the probabilities of the model for the two classes (signal vs background). We can visualise the distribution of the probabilities for each class by filtering the preds tensor according to the ground truch labels and then plotting the result as a histogram:

signal_test = preds[:, 1][targs.flatten() == 1].numpy()
background_test = preds[:, 1][targs.flatten() == 0].numpy()

plt.hist(signal_test, histtype="step", bins=20, range=(0, 1), label="Signal")
plt.hist(background_test, histtype="step", bins=20, range=(0, 1), label="Background")
plt.xlabel("Probability")
plt.ylabel("Events/bin")
plt.yscale("log")
plt.xlim(0, 1)
plt.legend(loc="lower right", frameon=False)
plt.show()
_images/lecture01_62_0.png

We see that although the model assigns high (low) probabilities to the signal (background) events, a fair amount of the signal events overlap with background ones. To handle this, one usually defines a “cut” or threshold that only includes events above that value. For example, if define the cut at 0, then all the events are counted and the signal efficiency \(\epsilon_S\) and background efficiency \(\epsilon_B\) are both 1. As we increase the cut, we reject more and more background events and the result is a curve with \(\epsilon_{B,S}\) ranging from 0 to 1.

This curve is equivalent to the Reciever Operating Characteristic (ROC) curve which plots the true positive rate

\[ \mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}} \,, \qquad \mathrm{TP\, (FP)} = \mathrm{number\, of\, true\, (false) \,positives}\,, \]

against the false positive rate FPR, where the FPR is the ratio of negative instances that are incorrectly classified as positive. In general there is a tradeoff between these two quantities: the higher the TPR, the more false positives (FPR) the classifier produces.

To visualise the ROC curve for our model’s predictions, we can use the handy roc_curve() function from scikit-learn:

# fpr = epsilon_B, tpr = epsilon_S
fpr, tpr, thresholds = roc_curve(y_true=targs, y_score=preds[:, 1])

plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], ls="--", color="k")
plt.xlabel(r"$\epsilon_B$")
plt.ylabel(r"$\epsilon_S$")
plt.tight_layout()
_images/lecture01_64_0.png

A perfect classifier would have a ROC curve with all signal and background events correctly identified, i.e. an Area Under the Curve (AUC) of 1. Let’s compute this area along with the accuracy on the test set:

acc_test = accuracy_score(targs, preds.argmax(dim=-1))
auc_test = auc(fpr, tpr)
print(f"Accuracy: {acc_test:.4f}")
print(f"AUC: {auc_test:.4f}")
Accuracy: 0.8314
AUC: 0.9077

Since the AUC is dominated by values at large \(\epsilon_B\), it is common to also report the background rejection at a fixed signal efficiency (often 30%). We can do that by defining an interpolating function across the tpr and fpr values as follows:

background_eff = interp1d(tpr, fpr)
background_eff_at_30 = background_eff(0.3)
print(f"Backround rejection at signal efficiency 0.3: {1/background_eff_at_30:0.3f}")
Backround rejection at signal efficiency 0.3: 42.233

Comparing these results again the The Machine Learning Landscape of Top Taggers review, shows that our baseline model falls short of the models in the review, which get a typical accuracy of 93% and an AUC of 98%.

_images/top-tagging-scores.png

Fig. 3 Figure reference: The Machine Learning Landscape of Top Taggers#

Let’s see if we can train a better model by choosing a clever representation of the input data! Before doing that, let’s collect this evaluation logic in a function that we can reuse later:

def compute_metrics(learn, test_df):
    test_dl = learn.dls.test_dl(test_items=test_df)
    preds, targs = learn.get_preds(dl=test_dl)
    fpr, tpr, _ = roc_curve(y_true=targs, y_score=preds[:, 1])
    acc_test = accuracy_score(targs, preds.argmax(dim=-1))
    auc_test = auc(fpr, tpr)
    background_eff = interp1d(tpr, fpr)
    background_eff_at_30 = background_eff(0.3)

    print(f"Accuracy: {acc_test:.4f}")
    print(f"AUC: {auc_test:.4f}")
    print(
        f"Backround rejection at signal efficiency 0.3: {1/background_eff_at_30:0.3f}"
    )
    return fpr, tpr
fpr_baseline, tpr_baseline = compute_metrics(learn, test_df)
Accuracy: 0.8314
AUC: 0.9077
Backround rejection at signal efficiency 0.3: 42.233

Jet representations#

In any machine learning problem, how we represent the data often has a large impact on the performance of the models we train. For jet tagging, the most common approaches one finds in the literature include:

  • Jets as images. A jet image is a pixelated grayscale image, where the pixel intensity represents the energy (or transverse momentum) of all particles that deposited energy in a particular location in the \(\eta-\phi\) plane. Typically, convolutional neural networks (CNNs) are used to process the images and we’ll ecplore these architectures in a future lesson.

  • Jets as sequences. Here the idea is to order the particles in a jet (usually by \(p_T\)) and use sequence-based architectures like recurrent neural networks (RNNs).

  • Jets as graphs. This approach treats each jet as a generic graph of nodes and edges. Graph neural networks (which we’ll also encounter later in the course) excel on this tpe of data.

  • Jets as sets. A generalisation of the previous representations, this approach simply treats each jets as an unordered collection or point cloud of 4-vectors.

  • Theory-inspired representations. Instead of representing the jets in formats to match specific neural network architectures, these approaches use results on IR safety from QCD to represent the jets as a simplified set of features. Fully-connected neural networks are then trained on these features.

You can find more details about each representation in a nice review article from 2017.

_images/jets.png

Fig. 4 Figure reference: Jet Substructure at the Large Hadron Collider#

In this lesson and the next, we’ll use one of the theory-inspired representations called \(N\)-subjettiness. Let’s take a look.

Representing jets with \(N\)-subjettiness observables#

\(N\)-subjettiness observables quantify how much of the radiation in a jet is aligned along different subjet axes. Although originally used for analytic approaches to distinguish different decays and event topologies, these observable can also be used as inputs for machine learning models and provide strong discriminating power.

To be precise, an \(N\)-subjettiness observable \(\tau_N^{(\beta)}\) measures the radiation about \(N\) axes in the jet according to an angular exponent \(\beta>0\):

\[ \tau_N^{(\beta)} = \frac{1}{p_{T,J}} \sum_{i\in J} p_{T,i} \min \left\{ R_{1,i}^\beta, R_{1,i}^\beta, \ldots , R_{1,i}^\beta \right\} \]

Here \(p_{T,J}\) is the transverse momentum of the jet, \(p_{T,i}\) is the transverse momentum of particle \(i\) in the jet, and \(R_{K,i}\) is the distance in the \(\eta-\phi\) plane of particle \(i\) to axis \(K\).

To measure substructure in a jet, one thus needs to measure a suitable number of \(N\)-subjettiness observables. In practice this is done by specifying the corrdinates of \(M\)-body phase space in terms of \(3M - 4\) \(N\)-subjettiness observables:

\[ \left\{ \tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \tau_2^{(0.5)}, \tau_2^{(1)}, \tau_2^{(2)}, \ldots , \tau_{m-1}^{(0.5)}, \tau_{m-1}^{(1)}, \tau_{m-1}^{(2)} \right\} \]

To see how we can use this basis as features for a neural network, we have computed \(N\)-subjettiness observables up through 6-body phase space using the pyjet library. You can download these features via the load_dataset() function as follows:

nsubjet_ds = load_dataset("dl4phys/top_tagging_nsubjettiness")
Downloading and preparing dataset parquet/dl4phys--top_tagging_nsubjettiness to /home/lewis/.cache/huggingface/datasets/parquet/dl4phys--top_tagging_nsubjettiness-d7eca4f13187c4c4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901...
Dataset parquet downloaded and prepared to /home/lewis/.cache/huggingface/datasets/parquet/dl4phys--top_tagging_nsubjettiness-d7eca4f13187c4c4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901. Subsequent calls will reuse this data.

As before, we’ll convert our Dataset object to a pandas DataFrame:

nsubjet_ds.set_format("pandas")
train_df, test_df = nsubjet_ds["train"][:], nsubjet_ds["test"][:]
train_df.head()
pT mass tau_1_0.5 tau_1_1 tau_1_2 tau_2_0.5 tau_2_1 tau_2_2 tau_3_0.5 tau_3_1 ... tau_4_0.5 tau_4_1 tau_4_2 tau_5_0.5 tau_5_1 tau_5_2 tau_6_0.5 tau_6_1 tau_6_2 label
0 543.633944 25.846792 0.165122 0.032661 0.002262 0.048830 0.003711 0.000044 0.030994 0.001630 ... 0.024336 0.001115 0.000008 0.004252 0.000234 7.706005e-07 0.000000 0.000000 0.000000e+00 0
1 452.411860 13.388679 0.162938 0.027598 0.000876 0.095902 0.015461 0.000506 0.079750 0.009733 ... 0.056854 0.005454 0.000072 0.044211 0.004430 6.175314e-05 0.037458 0.003396 3.670517e-05 0
2 429.495258 32.021091 0.244436 0.065901 0.005557 0.155202 0.038807 0.002762 0.123285 0.025339 ... 0.078205 0.012678 0.000567 0.052374 0.005935 9.395772e-05 0.037572 0.002932 2.237277e-05 0
3 512.675443 6.684734 0.102580 0.011369 0.000170 0.086306 0.007760 0.000071 0.068169 0.005386 ... 0.044705 0.002376 0.000008 0.027895 0.001364 4.400042e-06 0.009012 0.000379 6.731099e-07 0
4 527.956859 133.985415 0.407009 0.191839 0.065169 0.291460 0.105479 0.029753 0.209341 0.049187 ... 0.143768 0.033249 0.003689 0.135407 0.029054 2.593460e-03 0.110805 0.023179 2.202088e-03 0

5 rows × 21 columns

Following Section 3.2.2 of The Machine Learning Landscape of Top Taggers revie, we’ve also included the jet mass and jet \(p_T\) as input variables to allow the network to learn physical scales.

Let’s now train a model using these features. As before, we need to first define our DataLoaders object:

features = list(train_df.drop(columns=["label"]).columns)
splits = RandomSplitter(valid_pct=0.20, seed=42)(range_of(train_df))

dls = TabularDataLoaders.from_df(
    df=train_df,
    cont_names=features,
    y_names="label",
    y_block=CategoryBlock,
    splits=splits,
    bs=1024,
)

And just like before it’s a good idea to sanity check your data is formatted correctly with the show_batch() method:

dls.show_batch()
pT mass tau_1_0.5 tau_1_1 tau_1_2 tau_2_0.5 tau_2_1 tau_2_2 tau_3_0.5 tau_3_1 tau_3_2 tau_4_0.5 tau_4_1 tau_4_2 tau_5_0.5 tau_5_1 tau_5_2 tau_6_0.5 tau_6_1 tau_6_2 label
0 461.643372 58.081078 0.267102 0.088350 0.015706 0.182025 0.042736 0.005997 0.141589 0.029279 0.003416 0.120514 0.020182 0.001241 0.087524 0.013450 8.641806e-04 0.071813 0.010891 7.935878e-04 0
1 513.609070 129.866760 0.431575 0.202836 0.063762 0.327400 0.133254 0.040518 0.130512 0.023113 0.001422 0.114296 0.017393 0.000718 0.095355 0.013060 4.953301e-04 0.082081 0.009201 2.063908e-04 1
2 538.835754 21.680426 0.198053 0.039486 0.001619 0.038596 0.003683 0.000069 0.027622 0.002028 0.000024 0.018646 0.000869 0.000002 0.008453 0.000373 9.324909e-07 0.000000 0.000000 0.000000e+00 0
3 569.943970 14.177874 0.124071 0.018201 0.000619 0.091646 0.008896 0.000096 0.039875 0.002515 0.000014 0.008931 0.000650 0.000005 0.000000 0.000000 0.000000e+00 0.000000 0.000000 0.000000e+00 0
4 462.787750 167.859375 0.618895 0.366184 0.132532 0.274511 0.074367 0.006216 0.217250 0.049036 0.003042 0.185648 0.036743 0.001925 0.159761 0.027603 9.593506e-04 0.136480 0.022875 7.589663e-04 0
5 481.187836 21.275795 0.197569 0.041092 0.001955 0.117185 0.018937 0.000665 0.099367 0.012753 0.000281 0.085475 0.009725 0.000197 0.062330 0.005595 6.916394e-05 0.052907 0.004203 3.618403e-05 0
6 574.911987 42.508812 0.180569 0.037991 0.005424 0.108725 0.020727 0.004305 0.041011 0.003381 0.000071 0.028611 0.002046 0.000036 0.015887 0.001213 2.921311e-05 0.011662 0.000650 1.678485e-05 0
7 463.576508 53.591480 0.288984 0.092856 0.013347 0.224898 0.052918 0.003495 0.173352 0.032209 0.001432 0.133511 0.024035 0.001166 0.094518 0.015667 6.733207e-04 0.088208 0.012934 3.997425e-04 0
8 519.291260 17.618988 0.151518 0.026514 0.001151 0.085697 0.009568 0.000241 0.058985 0.004627 0.000063 0.039815 0.002514 0.000013 0.028490 0.001495 5.074164e-06 0.017248 0.000635 8.944363e-07 0
9 478.084625 124.346436 0.507225 0.254765 0.067330 0.182893 0.043455 0.006483 0.126383 0.019826 0.001121 0.089138 0.014123 0.000801 0.044779 0.005901 1.272047e-04 0.029706 0.003584 5.757449e-05 1

This looks good, so the last step is to create a Learner and find a good learning rate:

learn = tabular_learner(
    dls, layers=[200, 200, 50, 50], metrics=[accuracy, RocAucBinary()]
)

learn.lr_find()
SuggestedLRs(valley=0.002511886414140463)
_images/lecture01_86_3.png

This curve is similar to what we found before so let’s pick a learning rate of \(10^{-3}\) and train for 3 epochs:

learn.fit_one_cycle(n_epoch=3, lr_max=1e-3)
epoch train_loss valid_loss accuracy roc_auc_score time
0 0.234615 0.228308 0.903832 0.966693 00:08
1 0.225498 0.227929 0.903348 0.967744 00:08
2 0.222219 0.224911 0.904133 0.968275 00:08

We can already see that training on the \(N\)-subjettiness features has produced a better model than our baseline, which achieved around 83% and \(91%\) accuracy and AUC score respectively. Let’s wrap up by computing these metrics on the test set with our compute_metrics() function:

test_df = nsubjet_ds["test"].to_pandas()
fpr_nsubjet, tpr_nsubjet = compute_metrics(learn, test_df)
Accuracy: 0.9037
AUC: 0.9677
Backround rejection at signal efficiency 0.3: 373.915

This is much better and now just a 1-2% the classifiers reported in the review paper! We can also compare both models by plotting the background rejection rate against the signal efficiency:

fig, ax = plt.subplots()

plt.plot(tpr_baseline, 1 / (fpr_baseline + 1e-6), label="Baseline")
plt.plot(tpr_nsubjet, 1 / (fpr_nsubjet + 1e-6), label="6-body N-subjettiness")
plt.xlabel("Signal befficiency $\epsilon_{S}$")
plt.ylabel("Background rejection $1/\epsilon_{B}$")
plt.xlim(0, 1)
plt.yscale("log")
plt.legend()
plt.show()
_images/lecture01_92_0.png

Saving and sharing the model#

We’ve seen in this lecture how to load and prepare datasets for deep neural nets, and how to train the models with fastai. But what happens if you want to save your model for future use, or to simply reproduce the results from your paper in PRL 🙃?

One way to do this is by use the save() method of the Learner, which will store your model in a format called pickle. This is great if you’re doing quick experimentation, but at some point you might want to share the model with a colleague or the wider research community.

In the same way we were able to download a dataset from the Hugging Face Hub, it is also possible to share fastai models on the platform! To do so, you’ll first need to:

Once you’re created an account, you can log into the Hub with the following helper function:

notebook_login()

This will display a widget in which you can enter a Hugging Face token - you can find details on how to create tokens in the Hub documentation. Once you’re logged in, pushing our model to the Hub is simple via the push_to_hub_fastai() function:

user_or_org = "dl4phys"  # This can also be your Hub username, e.g. lewtun
model_id = "lewtun-top-tagging-nsubs"  # Change this to something different
repo_id = f"{user_or_org}/{model_id}"

push_to_hub_fastai(
    learner=learn,
    repo_id=repo_id,
    commit_message="Add new Learner",
)

This will push the model’s weights to the Hub, as well as a pyproject.toml file that defines the environment in which the Learner was created. Now that we’ve pushed our model to the Hub, we can now download it on any machine where fastai is installed! This is really handy when you need to quickly reproduce the results from your paper, e.g. here is how we use the from_pretrained_fastai() function to download the model and re-compute our scores on the test set:

learner = from_pretrained_fastai(repo_id)
_, _ = compute_metrics(learner, test_df)
Accuracy: 0.9037
AUC: 0.9677
Backround rejection at signal efficiency 0.3: 373.915

Exercises#

  • Try changing the network architecture by adjusting the layers argument in tabular_learner() on the \(N\)-subjettiness features. What happens if you keep the number of nodes fixed and increase the number of layers? Similarly, what happens if you have just a single layer, but increase the number of nodes on that layer?

  • Push one of your new models to the dl4phys organisation on the Hugging Face Hub.

  • Train a model on the \(N\)-subjettiness features without including the jet mass and \(p_T\). Does this have a positive or negative impact on performance?

  • Train a model using 2-body and 4-body \(N\)-subjettiness features to see if the performance is saturated with a smaller number of features.