Lecture 1 - Jet tagging with neural networks
Contents
Lecture 1 - Jet tagging with neural networks#
A first look at training deep neural networks to classify jets in proton-proton collisions.
Learning objectives#
Understand what jet tagging is and how to frame it as a machine learning task
Understand the main steps needed to train and evaluate a jet tagger
Learn how to download and process data with the 🤗 Datasets library
Gain an introduction to the fastai library and how to push models to the Hugging Face Hub
References#
Chapter 1 of Deep Learning for Coders with fastai & PyTorch by Jeremy Howard and Sylvain Gugger.
The Machine Learning Landscape of Top Taggers by G. Kasieczka et al.
How Much Information is in a Jet? by K. Datta and A. Larkowski.
The task and data#
For the first few lectures, we’ll be analysing the Top Quark Tagging dataset, which is a famous benchmark that’s used to compare the performance of jet classification algorithms. The dataset consists of around 2 million Monte Carlo simulated events in proton-proton collisions that have been clustered into jets.
Framed as a supervised machine learning task, the goal is to train a model that can classify each jet as either a top-quark signal or quark-gluon background.
Setup#
# Uncomment and run this cell if using Colab, Kaggle etc
# %pip install fastai==2.6.0 datasets git+https://github.com/huggingface/huggingface_hub
# Check we have the correct fastai version
import fastai
assert fastai.__version__ == "2.6.0"
Import libraries#
from datasets import load_dataset
from fastai.tabular.all import *
from huggingface_hub import from_pretrained_fastai, notebook_login, push_to_hub_fastai
from scipy.interpolate import interp1d
from sklearn.metrics import accuracy_score, auc, roc_auc_score, roc_curve
from sklearn.model_selection import train_test_split
import datasets
# Suppress logs
datasets.logging.set_verbosity_error()
Getting the data#
We will use the 🤗 Datasets library to download and process the datasets that we’ll encounter in this course. 🤗 Datasets provides smart caching and allows you to process larger-than-RAM datasets by exploiting a technique called memory-mapping that provides a mapping between RAM and filesystem storage.
To download the Top Quark Tagging dataset from the Hugging Face Hub, we can use the load_dataset()
function:
top_tagging_ds = load_dataset("dl4phys/top_tagging")
If we look inside our top_tagging_ds
object
top_tagging_ds
DatasetDict({
train: Dataset({
features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
num_rows: 1211000
})
test: Dataset({
features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
num_rows: 404000
})
validation: Dataset({
features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
num_rows: 403000
})
})
we see it is similar to a Python dictionary, with each key corresponding to a different split. And we can use the usual dictionary syntax to access an individual split:
top_tagging_ds["train"]
Dataset({
features: ['E_0', 'PX_0', 'PY_0', 'PZ_0', 'E_1', 'PX_1', 'PY_1', 'PZ_1', 'E_2', 'PX_2', 'PY_2', 'PZ_2', 'E_3', 'PX_3', 'PY_3', 'PZ_3', 'E_4', 'PX_4', 'PY_4', 'PZ_4', 'E_5', 'PX_5', 'PY_5', 'PZ_5', 'E_6', 'PX_6', 'PY_6', 'PZ_6', 'E_7', 'PX_7', 'PY_7', 'PZ_7', 'E_8', 'PX_8', 'PY_8', 'PZ_8', 'E_9', 'PX_9', 'PY_9', 'PZ_9', 'E_10', 'PX_10', 'PY_10', 'PZ_10', 'E_11', 'PX_11', 'PY_11', 'PZ_11', 'E_12', 'PX_12', 'PY_12', 'PZ_12', 'E_13', 'PX_13', 'PY_13', 'PZ_13', 'E_14', 'PX_14', 'PY_14', 'PZ_14', 'E_15', 'PX_15', 'PY_15', 'PZ_15', 'E_16', 'PX_16', 'PY_16', 'PZ_16', 'E_17', 'PX_17', 'PY_17', 'PZ_17', 'E_18', 'PX_18', 'PY_18', 'PZ_18', 'E_19', 'PX_19', 'PY_19', 'PZ_19', 'E_20', 'PX_20', 'PY_20', 'PZ_20', 'E_21', 'PX_21', 'PY_21', 'PZ_21', 'E_22', 'PX_22', 'PY_22', 'PZ_22', 'E_23', 'PX_23', 'PY_23', 'PZ_23', 'E_24', 'PX_24', 'PY_24', 'PZ_24', 'E_25', 'PX_25', 'PY_25', 'PZ_25', 'E_26', 'PX_26', 'PY_26', 'PZ_26', 'E_27', 'PX_27', 'PY_27', 'PZ_27', 'E_28', 'PX_28', 'PY_28', 'PZ_28', 'E_29', 'PX_29', 'PY_29', 'PZ_29', 'E_30', 'PX_30', 'PY_30', 'PZ_30', 'E_31', 'PX_31', 'PY_31', 'PZ_31', 'E_32', 'PX_32', 'PY_32', 'PZ_32', 'E_33', 'PX_33', 'PY_33', 'PZ_33', 'E_34', 'PX_34', 'PY_34', 'PZ_34', 'E_35', 'PX_35', 'PY_35', 'PZ_35', 'E_36', 'PX_36', 'PY_36', 'PZ_36', 'E_37', 'PX_37', 'PY_37', 'PZ_37', 'E_38', 'PX_38', 'PY_38', 'PZ_38', 'E_39', 'PX_39', 'PY_39', 'PZ_39', 'E_40', 'PX_40', 'PY_40', 'PZ_40', 'E_41', 'PX_41', 'PY_41', 'PZ_41', 'E_42', 'PX_42', 'PY_42', 'PZ_42', 'E_43', 'PX_43', 'PY_43', 'PZ_43', 'E_44', 'PX_44', 'PY_44', 'PZ_44', 'E_45', 'PX_45', 'PY_45', 'PZ_45', 'E_46', 'PX_46', 'PY_46', 'PZ_46', 'E_47', 'PX_47', 'PY_47', 'PZ_47', 'E_48', 'PX_48', 'PY_48', 'PZ_48', 'E_49', 'PX_49', 'PY_49', 'PZ_49', 'E_50', 'PX_50', 'PY_50', 'PZ_50', 'E_51', 'PX_51', 'PY_51', 'PZ_51', 'E_52', 'PX_52', 'PY_52', 'PZ_52', 'E_53', 'PX_53', 'PY_53', 'PZ_53', 'E_54', 'PX_54', 'PY_54', 'PZ_54', 'E_55', 'PX_55', 'PY_55', 'PZ_55', 'E_56', 'PX_56', 'PY_56', 'PZ_56', 'E_57', 'PX_57', 'PY_57', 'PZ_57', 'E_58', 'PX_58', 'PY_58', 'PZ_58', 'E_59', 'PX_59', 'PY_59', 'PZ_59', 'E_60', 'PX_60', 'PY_60', 'PZ_60', 'E_61', 'PX_61', 'PY_61', 'PZ_61', 'E_62', 'PX_62', 'PY_62', 'PZ_62', 'E_63', 'PX_63', 'PY_63', 'PZ_63', 'E_64', 'PX_64', 'PY_64', 'PZ_64', 'E_65', 'PX_65', 'PY_65', 'PZ_65', 'E_66', 'PX_66', 'PY_66', 'PZ_66', 'E_67', 'PX_67', 'PY_67', 'PZ_67', 'E_68', 'PX_68', 'PY_68', 'PZ_68', 'E_69', 'PX_69', 'PY_69', 'PZ_69', 'E_70', 'PX_70', 'PY_70', 'PZ_70', 'E_71', 'PX_71', 'PY_71', 'PZ_71', 'E_72', 'PX_72', 'PY_72', 'PZ_72', 'E_73', 'PX_73', 'PY_73', 'PZ_73', 'E_74', 'PX_74', 'PY_74', 'PZ_74', 'E_75', 'PX_75', 'PY_75', 'PZ_75', 'E_76', 'PX_76', 'PY_76', 'PZ_76', 'E_77', 'PX_77', 'PY_77', 'PZ_77', 'E_78', 'PX_78', 'PY_78', 'PZ_78', 'E_79', 'PX_79', 'PY_79', 'PZ_79', 'E_80', 'PX_80', 'PY_80', 'PZ_80', 'E_81', 'PX_81', 'PY_81', 'PZ_81', 'E_82', 'PX_82', 'PY_82', 'PZ_82', 'E_83', 'PX_83', 'PY_83', 'PZ_83', 'E_84', 'PX_84', 'PY_84', 'PZ_84', 'E_85', 'PX_85', 'PY_85', 'PZ_85', 'E_86', 'PX_86', 'PY_86', 'PZ_86', 'E_87', 'PX_87', 'PY_87', 'PZ_87', 'E_88', 'PX_88', 'PY_88', 'PZ_88', 'E_89', 'PX_89', 'PY_89', 'PZ_89', 'E_90', 'PX_90', 'PY_90', 'PZ_90', 'E_91', 'PX_91', 'PY_91', 'PZ_91', 'E_92', 'PX_92', 'PY_92', 'PZ_92', 'E_93', 'PX_93', 'PY_93', 'PZ_93', 'E_94', 'PX_94', 'PY_94', 'PZ_94', 'E_95', 'PX_95', 'PY_95', 'PZ_95', 'E_96', 'PX_96', 'PY_96', 'PZ_96', 'E_97', 'PX_97', 'PY_97', 'PZ_97', 'E_98', 'PX_98', 'PY_98', 'PZ_98', 'E_99', 'PX_99', 'PY_99', 'PZ_99', 'E_100', 'PX_100', 'PY_100', 'PZ_100', 'E_101', 'PX_101', 'PY_101', 'PZ_101', 'E_102', 'PX_102', 'PY_102', 'PZ_102', 'E_103', 'PX_103', 'PY_103', 'PZ_103', 'E_104', 'PX_104', 'PY_104', 'PZ_104', 'E_105', 'PX_105', 'PY_105', 'PZ_105', 'E_106', 'PX_106', 'PY_106', 'PZ_106', 'E_107', 'PX_107', 'PY_107', 'PZ_107', 'E_108', 'PX_108', 'PY_108', 'PZ_108', 'E_109', 'PX_109', 'PY_109', 'PZ_109', 'E_110', 'PX_110', 'PY_110', 'PZ_110', 'E_111', 'PX_111', 'PY_111', 'PZ_111', 'E_112', 'PX_112', 'PY_112', 'PZ_112', 'E_113', 'PX_113', 'PY_113', 'PZ_113', 'E_114', 'PX_114', 'PY_114', 'PZ_114', 'E_115', 'PX_115', 'PY_115', 'PZ_115', 'E_116', 'PX_116', 'PY_116', 'PZ_116', 'E_117', 'PX_117', 'PY_117', 'PZ_117', 'E_118', 'PX_118', 'PY_118', 'PZ_118', 'E_119', 'PX_119', 'PY_119', 'PZ_119', 'E_120', 'PX_120', 'PY_120', 'PZ_120', 'E_121', 'PX_121', 'PY_121', 'PZ_121', 'E_122', 'PX_122', 'PY_122', 'PZ_122', 'E_123', 'PX_123', 'PY_123', 'PZ_123', 'E_124', 'PX_124', 'PY_124', 'PZ_124', 'E_125', 'PX_125', 'PY_125', 'PZ_125', 'E_126', 'PX_126', 'PY_126', 'PZ_126', 'E_127', 'PX_127', 'PY_127', 'PZ_127', 'E_128', 'PX_128', 'PY_128', 'PZ_128', 'E_129', 'PX_129', 'PY_129', 'PZ_129', 'E_130', 'PX_130', 'PY_130', 'PZ_130', 'E_131', 'PX_131', 'PY_131', 'PZ_131', 'E_132', 'PX_132', 'PY_132', 'PZ_132', 'E_133', 'PX_133', 'PY_133', 'PZ_133', 'E_134', 'PX_134', 'PY_134', 'PZ_134', 'E_135', 'PX_135', 'PY_135', 'PZ_135', 'E_136', 'PX_136', 'PY_136', 'PZ_136', 'E_137', 'PX_137', 'PY_137', 'PZ_137', 'E_138', 'PX_138', 'PY_138', 'PZ_138', 'E_139', 'PX_139', 'PY_139', 'PZ_139', 'E_140', 'PX_140', 'PY_140', 'PZ_140', 'E_141', 'PX_141', 'PY_141', 'PZ_141', 'E_142', 'PX_142', 'PY_142', 'PZ_142', 'E_143', 'PX_143', 'PY_143', 'PZ_143', 'E_144', 'PX_144', 'PY_144', 'PZ_144', 'E_145', 'PX_145', 'PY_145', 'PZ_145', 'E_146', 'PX_146', 'PY_146', 'PZ_146', 'E_147', 'PX_147', 'PY_147', 'PZ_147', 'E_148', 'PX_148', 'PY_148', 'PZ_148', 'E_149', 'PX_149', 'PY_149', 'PZ_149', 'E_150', 'PX_150', 'PY_150', 'PZ_150', 'E_151', 'PX_151', 'PY_151', 'PZ_151', 'E_152', 'PX_152', 'PY_152', 'PZ_152', 'E_153', 'PX_153', 'PY_153', 'PZ_153', 'E_154', 'PX_154', 'PY_154', 'PZ_154', 'E_155', 'PX_155', 'PY_155', 'PZ_155', 'E_156', 'PX_156', 'PY_156', 'PZ_156', 'E_157', 'PX_157', 'PY_157', 'PZ_157', 'E_158', 'PX_158', 'PY_158', 'PZ_158', 'E_159', 'PX_159', 'PY_159', 'PZ_159', 'E_160', 'PX_160', 'PY_160', 'PZ_160', 'E_161', 'PX_161', 'PY_161', 'PZ_161', 'E_162', 'PX_162', 'PY_162', 'PZ_162', 'E_163', 'PX_163', 'PY_163', 'PZ_163', 'E_164', 'PX_164', 'PY_164', 'PZ_164', 'E_165', 'PX_165', 'PY_165', 'PZ_165', 'E_166', 'PX_166', 'PY_166', 'PZ_166', 'E_167', 'PX_167', 'PY_167', 'PZ_167', 'E_168', 'PX_168', 'PY_168', 'PZ_168', 'E_169', 'PX_169', 'PY_169', 'PZ_169', 'E_170', 'PX_170', 'PY_170', 'PZ_170', 'E_171', 'PX_171', 'PY_171', 'PZ_171', 'E_172', 'PX_172', 'PY_172', 'PZ_172', 'E_173', 'PX_173', 'PY_173', 'PZ_173', 'E_174', 'PX_174', 'PY_174', 'PZ_174', 'E_175', 'PX_175', 'PY_175', 'PZ_175', 'E_176', 'PX_176', 'PY_176', 'PZ_176', 'E_177', 'PX_177', 'PY_177', 'PZ_177', 'E_178', 'PX_178', 'PY_178', 'PZ_178', 'E_179', 'PX_179', 'PY_179', 'PZ_179', 'E_180', 'PX_180', 'PY_180', 'PZ_180', 'E_181', 'PX_181', 'PY_181', 'PZ_181', 'E_182', 'PX_182', 'PY_182', 'PZ_182', 'E_183', 'PX_183', 'PY_183', 'PZ_183', 'E_184', 'PX_184', 'PY_184', 'PZ_184', 'E_185', 'PX_185', 'PY_185', 'PZ_185', 'E_186', 'PX_186', 'PY_186', 'PZ_186', 'E_187', 'PX_187', 'PY_187', 'PZ_187', 'E_188', 'PX_188', 'PY_188', 'PZ_188', 'E_189', 'PX_189', 'PY_189', 'PZ_189', 'E_190', 'PX_190', 'PY_190', 'PZ_190', 'E_191', 'PX_191', 'PY_191', 'PZ_191', 'E_192', 'PX_192', 'PY_192', 'PZ_192', 'E_193', 'PX_193', 'PY_193', 'PZ_193', 'E_194', 'PX_194', 'PY_194', 'PZ_194', 'E_195', 'PX_195', 'PY_195', 'PZ_195', 'E_196', 'PX_196', 'PY_196', 'PZ_196', 'E_197', 'PX_197', 'PY_197', 'PZ_197', 'E_198', 'PX_198', 'PY_198', 'PZ_198', 'E_199', 'PX_199', 'PY_199', 'PZ_199', 'truthE', 'truthPX', 'truthPY', 'truthPZ', 'ttv', 'is_signal_new'],
num_rows: 1211000
})
The Dataset
object is one of the core data structures in 🤗 Datasets and behaves like an ordinary Python list
, so we can query its length:
len(top_tagging_ds["train"])
1211000
or access a single element by its index:
top_tagging_ds["train"][0]
{'E_0': 474.0711364746094,
'PX_0': -250.34703063964844,
'PY_0': -223.65196228027344,
'PZ_0': -334.73809814453125,
'E_1': 103.23623657226562,
'PX_1': -48.8662223815918,
'PY_1': -56.790775299072266,
'PZ_1': -71.0254898071289,
'E_2': 105.25556945800781,
'PX_2': -55.415000915527344,
'PY_2': -49.96888732910156,
'PZ_2': -74.23626708984375,
'E_3': 40.17677688598633,
'PX_3': -21.760696411132812,
'PY_3': -18.71761131286621,
'PZ_3': -28.112215042114258,
'E_4': 22.4285831451416,
'PX_4': -11.835756301879883,
'PY_4': -10.374107360839844,
'PZ_4': -15.979177474975586,
'E_5': 20.334388732910156,
'PX_5': -10.950518608093262,
'PY_5': -9.545439720153809,
'PZ_5': -14.228776931762695,
'E_6': 19.030899047851562,
'PX_6': -10.243264198303223,
'PY_6': -9.004837036132812,
'PZ_6': -13.272662162780762,
'E_7': 13.460596084594727,
'PX_7': -7.3433637619018555,
'PY_7': -6.359743595123291,
'PZ_7': -9.317526817321777,
'E_8': 11.226107597351074,
'PX_8': -5.981515884399414,
'PY_8': -5.456268787384033,
'PZ_8': -7.776637554168701,
'E_9': 10.445060729980469,
'PX_9': -5.460624694824219,
'PY_9': -4.854524612426758,
'PZ_9': -7.464211463928223,
'E_10': 9.077269554138184,
'PX_10': -5.811364650726318,
'PY_10': -3.4854695796966553,
'PZ_10': -6.039566993713379,
'E_11': 9.056221008300781,
'PX_11': -4.758406162261963,
'PY_11': -4.0972113609313965,
'PZ_11': -6.525762557983398,
'E_12': 6.96318244934082,
'PX_12': -3.490816593170166,
'PY_12': -3.0960206985473633,
'PZ_12': -5.168632984161377,
'E_13': 5.772968769073486,
'PX_13': -2.934152364730835,
'PY_13': -2.7418923377990723,
'PZ_13': -4.147281646728516,
'E_14': 3.760998249053955,
'PX_14': -2.1263434886932373,
'PY_14': -1.7262251377105713,
'PZ_14': -2.5775797367095947,
'E_15': 2.9336676597595215,
'PX_15': -1.5918165445327759,
'PY_15': -1.277614951133728,
'PZ_15': -2.107184410095215,
'E_16': 2.729625940322876,
'PX_16': -1.4158698320388794,
'PY_16': -1.217659831047058,
'PZ_16': -1.9908478260040283,
'E_17': 2.7179172039031982,
'PX_17': -1.3310680389404297,
'PY_17': -1.0936245918273926,
'PZ_17': -2.102217197418213,
'E_18': 2.301811933517456,
'PX_18': -1.1343910694122314,
'PY_18': -1.1675245761871338,
'PZ_18': -1.6273847818374634,
'E_19': 1.5100955963134766,
'PX_19': -1.0334879159927368,
'PY_19': -0.7483676671981812,
'PZ_19': -0.8076121807098389,
'E_20': 1.340166687965393,
'PX_20': -0.8890589475631714,
'PY_20': -0.7178719639778137,
'PZ_20': -0.700200617313385,
'E_21': 1.0327688455581665,
'PX_21': -0.11786821484565735,
'PY_21': -0.49550384283065796,
'PZ_21': -0.8984400629997253,
'E_22': 0.4266541004180908,
'PX_22': -0.2976595461368561,
'PY_22': -0.10618320107460022,
'PZ_22': -0.2866315543651581,
'E_23': 0.0,
'PX_23': 0.0,
'PY_23': 0.0,
'PZ_23': 0.0,
'E_24': 0.0,
'PX_24': 0.0,
'PY_24': 0.0,
'PZ_24': 0.0,
'E_25': 0.0,
'PX_25': 0.0,
'PY_25': 0.0,
'PZ_25': 0.0,
'E_26': 0.0,
'PX_26': 0.0,
'PY_26': 0.0,
'PZ_26': 0.0,
'E_27': 0.0,
'PX_27': 0.0,
'PY_27': 0.0,
'PZ_27': 0.0,
'E_28': 0.0,
'PX_28': 0.0,
'PY_28': 0.0,
'PZ_28': 0.0,
'E_29': 0.0,
'PX_29': 0.0,
'PY_29': 0.0,
'PZ_29': 0.0,
'E_30': 0.0,
'PX_30': 0.0,
'PY_30': 0.0,
'PZ_30': 0.0,
'E_31': 0.0,
'PX_31': 0.0,
'PY_31': 0.0,
'PZ_31': 0.0,
'E_32': 0.0,
'PX_32': 0.0,
'PY_32': 0.0,
'PZ_32': 0.0,
'E_33': 0.0,
'PX_33': 0.0,
'PY_33': 0.0,
'PZ_33': 0.0,
'E_34': 0.0,
'PX_34': 0.0,
'PY_34': 0.0,
'PZ_34': 0.0,
'E_35': 0.0,
'PX_35': 0.0,
'PY_35': 0.0,
'PZ_35': 0.0,
'E_36': 0.0,
'PX_36': 0.0,
'PY_36': 0.0,
'PZ_36': 0.0,
'E_37': 0.0,
'PX_37': 0.0,
'PY_37': 0.0,
'PZ_37': 0.0,
'E_38': 0.0,
'PX_38': 0.0,
'PY_38': 0.0,
'PZ_38': 0.0,
'E_39': 0.0,
'PX_39': 0.0,
'PY_39': 0.0,
'PZ_39': 0.0,
'E_40': 0.0,
'PX_40': 0.0,
'PY_40': 0.0,
'PZ_40': 0.0,
'E_41': 0.0,
'PX_41': 0.0,
'PY_41': 0.0,
'PZ_41': 0.0,
'E_42': 0.0,
'PX_42': 0.0,
'PY_42': 0.0,
'PZ_42': 0.0,
'E_43': 0.0,
'PX_43': 0.0,
'PY_43': 0.0,
'PZ_43': 0.0,
'E_44': 0.0,
'PX_44': 0.0,
'PY_44': 0.0,
'PZ_44': 0.0,
'E_45': 0.0,
'PX_45': 0.0,
'PY_45': 0.0,
'PZ_45': 0.0,
'E_46': 0.0,
'PX_46': 0.0,
'PY_46': 0.0,
'PZ_46': 0.0,
'E_47': 0.0,
'PX_47': 0.0,
'PY_47': 0.0,
'PZ_47': 0.0,
'E_48': 0.0,
'PX_48': 0.0,
'PY_48': 0.0,
'PZ_48': 0.0,
'E_49': 0.0,
'PX_49': 0.0,
'PY_49': 0.0,
'PZ_49': 0.0,
'E_50': 0.0,
'PX_50': 0.0,
'PY_50': 0.0,
'PZ_50': 0.0,
'E_51': 0.0,
'PX_51': 0.0,
'PY_51': 0.0,
'PZ_51': 0.0,
'E_52': 0.0,
'PX_52': 0.0,
'PY_52': 0.0,
'PZ_52': 0.0,
'E_53': 0.0,
'PX_53': 0.0,
'PY_53': 0.0,
'PZ_53': 0.0,
'E_54': 0.0,
'PX_54': 0.0,
'PY_54': 0.0,
'PZ_54': 0.0,
'E_55': 0.0,
'PX_55': 0.0,
'PY_55': 0.0,
'PZ_55': 0.0,
'E_56': 0.0,
'PX_56': 0.0,
'PY_56': 0.0,
'PZ_56': 0.0,
'E_57': 0.0,
'PX_57': 0.0,
'PY_57': 0.0,
'PZ_57': 0.0,
'E_58': 0.0,
'PX_58': 0.0,
'PY_58': 0.0,
'PZ_58': 0.0,
'E_59': 0.0,
'PX_59': 0.0,
'PY_59': 0.0,
'PZ_59': 0.0,
'E_60': 0.0,
'PX_60': 0.0,
'PY_60': 0.0,
'PZ_60': 0.0,
'E_61': 0.0,
'PX_61': 0.0,
'PY_61': 0.0,
'PZ_61': 0.0,
'E_62': 0.0,
'PX_62': 0.0,
'PY_62': 0.0,
'PZ_62': 0.0,
'E_63': 0.0,
'PX_63': 0.0,
'PY_63': 0.0,
'PZ_63': 0.0,
'E_64': 0.0,
'PX_64': 0.0,
'PY_64': 0.0,
'PZ_64': 0.0,
'E_65': 0.0,
'PX_65': 0.0,
'PY_65': 0.0,
'PZ_65': 0.0,
'E_66': 0.0,
'PX_66': 0.0,
'PY_66': 0.0,
'PZ_66': 0.0,
'E_67': 0.0,
'PX_67': 0.0,
'PY_67': 0.0,
'PZ_67': 0.0,
'E_68': 0.0,
'PX_68': 0.0,
'PY_68': 0.0,
'PZ_68': 0.0,
'E_69': 0.0,
'PX_69': 0.0,
'PY_69': 0.0,
'PZ_69': 0.0,
'E_70': 0.0,
'PX_70': 0.0,
'PY_70': 0.0,
'PZ_70': 0.0,
'E_71': 0.0,
'PX_71': 0.0,
'PY_71': 0.0,
'PZ_71': 0.0,
'E_72': 0.0,
'PX_72': 0.0,
'PY_72': 0.0,
'PZ_72': 0.0,
'E_73': 0.0,
'PX_73': 0.0,
'PY_73': 0.0,
'PZ_73': 0.0,
'E_74': 0.0,
'PX_74': 0.0,
'PY_74': 0.0,
'PZ_74': 0.0,
'E_75': 0.0,
'PX_75': 0.0,
'PY_75': 0.0,
'PZ_75': 0.0,
'E_76': 0.0,
'PX_76': 0.0,
'PY_76': 0.0,
'PZ_76': 0.0,
'E_77': 0.0,
'PX_77': 0.0,
'PY_77': 0.0,
'PZ_77': 0.0,
'E_78': 0.0,
'PX_78': 0.0,
'PY_78': 0.0,
'PZ_78': 0.0,
'E_79': 0.0,
'PX_79': 0.0,
'PY_79': 0.0,
'PZ_79': 0.0,
'E_80': 0.0,
'PX_80': 0.0,
'PY_80': 0.0,
'PZ_80': 0.0,
'E_81': 0.0,
'PX_81': 0.0,
'PY_81': 0.0,
'PZ_81': 0.0,
'E_82': 0.0,
'PX_82': 0.0,
'PY_82': 0.0,
'PZ_82': 0.0,
'E_83': 0.0,
'PX_83': 0.0,
'PY_83': 0.0,
'PZ_83': 0.0,
'E_84': 0.0,
'PX_84': 0.0,
'PY_84': 0.0,
'PZ_84': 0.0,
'E_85': 0.0,
'PX_85': 0.0,
'PY_85': 0.0,
'PZ_85': 0.0,
'E_86': 0.0,
'PX_86': 0.0,
'PY_86': 0.0,
'PZ_86': 0.0,
'E_87': 0.0,
'PX_87': 0.0,
'PY_87': 0.0,
'PZ_87': 0.0,
'E_88': 0.0,
'PX_88': 0.0,
'PY_88': 0.0,
'PZ_88': 0.0,
'E_89': 0.0,
'PX_89': 0.0,
'PY_89': 0.0,
'PZ_89': 0.0,
'E_90': 0.0,
'PX_90': 0.0,
'PY_90': 0.0,
'PZ_90': 0.0,
'E_91': 0.0,
'PX_91': 0.0,
'PY_91': 0.0,
'PZ_91': 0.0,
'E_92': 0.0,
'PX_92': 0.0,
'PY_92': 0.0,
'PZ_92': 0.0,
'E_93': 0.0,
'PX_93': 0.0,
'PY_93': 0.0,
'PZ_93': 0.0,
'E_94': 0.0,
'PX_94': 0.0,
'PY_94': 0.0,
'PZ_94': 0.0,
'E_95': 0.0,
'PX_95': 0.0,
'PY_95': 0.0,
'PZ_95': 0.0,
'E_96': 0.0,
'PX_96': 0.0,
'PY_96': 0.0,
'PZ_96': 0.0,
'E_97': 0.0,
'PX_97': 0.0,
'PY_97': 0.0,
'PZ_97': 0.0,
'E_98': 0.0,
'PX_98': 0.0,
'PY_98': 0.0,
'PZ_98': 0.0,
'E_99': 0.0,
'PX_99': 0.0,
'PY_99': 0.0,
'PZ_99': 0.0,
'E_100': 0.0,
'PX_100': 0.0,
'PY_100': 0.0,
'PZ_100': 0.0,
'E_101': 0.0,
'PX_101': 0.0,
'PY_101': 0.0,
'PZ_101': 0.0,
'E_102': 0.0,
'PX_102': 0.0,
'PY_102': 0.0,
'PZ_102': 0.0,
'E_103': 0.0,
'PX_103': 0.0,
'PY_103': 0.0,
'PZ_103': 0.0,
'E_104': 0.0,
'PX_104': 0.0,
'PY_104': 0.0,
'PZ_104': 0.0,
'E_105': 0.0,
'PX_105': 0.0,
'PY_105': 0.0,
'PZ_105': 0.0,
'E_106': 0.0,
'PX_106': 0.0,
'PY_106': 0.0,
'PZ_106': 0.0,
'E_107': 0.0,
'PX_107': 0.0,
'PY_107': 0.0,
'PZ_107': 0.0,
'E_108': 0.0,
'PX_108': 0.0,
'PY_108': 0.0,
'PZ_108': 0.0,
'E_109': 0.0,
'PX_109': 0.0,
'PY_109': 0.0,
'PZ_109': 0.0,
'E_110': 0.0,
'PX_110': 0.0,
'PY_110': 0.0,
'PZ_110': 0.0,
'E_111': 0.0,
'PX_111': 0.0,
'PY_111': 0.0,
'PZ_111': 0.0,
'E_112': 0.0,
'PX_112': 0.0,
'PY_112': 0.0,
'PZ_112': 0.0,
'E_113': 0.0,
'PX_113': 0.0,
'PY_113': 0.0,
'PZ_113': 0.0,
'E_114': 0.0,
'PX_114': 0.0,
'PY_114': 0.0,
'PZ_114': 0.0,
'E_115': 0.0,
'PX_115': 0.0,
'PY_115': 0.0,
'PZ_115': 0.0,
'E_116': 0.0,
'PX_116': 0.0,
'PY_116': 0.0,
'PZ_116': 0.0,
'E_117': 0.0,
'PX_117': 0.0,
'PY_117': 0.0,
'PZ_117': 0.0,
'E_118': 0.0,
'PX_118': 0.0,
'PY_118': 0.0,
'PZ_118': 0.0,
'E_119': 0.0,
'PX_119': 0.0,
'PY_119': 0.0,
'PZ_119': 0.0,
'E_120': 0.0,
'PX_120': 0.0,
'PY_120': 0.0,
'PZ_120': 0.0,
'E_121': 0.0,
'PX_121': 0.0,
'PY_121': 0.0,
'PZ_121': 0.0,
'E_122': 0.0,
'PX_122': 0.0,
'PY_122': 0.0,
'PZ_122': 0.0,
'E_123': 0.0,
'PX_123': 0.0,
'PY_123': 0.0,
'PZ_123': 0.0,
'E_124': 0.0,
'PX_124': 0.0,
'PY_124': 0.0,
'PZ_124': 0.0,
'E_125': 0.0,
'PX_125': 0.0,
'PY_125': 0.0,
'PZ_125': 0.0,
'E_126': 0.0,
'PX_126': 0.0,
'PY_126': 0.0,
'PZ_126': 0.0,
'E_127': 0.0,
'PX_127': 0.0,
'PY_127': 0.0,
'PZ_127': 0.0,
'E_128': 0.0,
'PX_128': 0.0,
'PY_128': 0.0,
'PZ_128': 0.0,
'E_129': 0.0,
'PX_129': 0.0,
'PY_129': 0.0,
'PZ_129': 0.0,
'E_130': 0.0,
'PX_130': 0.0,
'PY_130': 0.0,
'PZ_130': 0.0,
'E_131': 0.0,
'PX_131': 0.0,
'PY_131': 0.0,
'PZ_131': 0.0,
'E_132': 0.0,
'PX_132': 0.0,
'PY_132': 0.0,
'PZ_132': 0.0,
'E_133': 0.0,
'PX_133': 0.0,
'PY_133': 0.0,
'PZ_133': 0.0,
'E_134': 0.0,
'PX_134': 0.0,
'PY_134': 0.0,
'PZ_134': 0.0,
'E_135': 0.0,
'PX_135': 0.0,
'PY_135': 0.0,
'PZ_135': 0.0,
'E_136': 0.0,
'PX_136': 0.0,
'PY_136': 0.0,
'PZ_136': 0.0,
'E_137': 0.0,
'PX_137': 0.0,
'PY_137': 0.0,
'PZ_137': 0.0,
'E_138': 0.0,
'PX_138': 0.0,
'PY_138': 0.0,
'PZ_138': 0.0,
'E_139': 0.0,
'PX_139': 0.0,
'PY_139': 0.0,
'PZ_139': 0.0,
'E_140': 0.0,
'PX_140': 0.0,
'PY_140': 0.0,
'PZ_140': 0.0,
'E_141': 0.0,
'PX_141': 0.0,
'PY_141': 0.0,
'PZ_141': 0.0,
'E_142': 0.0,
'PX_142': 0.0,
'PY_142': 0.0,
'PZ_142': 0.0,
'E_143': 0.0,
'PX_143': 0.0,
'PY_143': 0.0,
'PZ_143': 0.0,
'E_144': 0.0,
'PX_144': 0.0,
'PY_144': 0.0,
'PZ_144': 0.0,
'E_145': 0.0,
'PX_145': 0.0,
'PY_145': 0.0,
'PZ_145': 0.0,
'E_146': 0.0,
'PX_146': 0.0,
'PY_146': 0.0,
'PZ_146': 0.0,
'E_147': 0.0,
'PX_147': 0.0,
'PY_147': 0.0,
'PZ_147': 0.0,
'E_148': 0.0,
'PX_148': 0.0,
'PY_148': 0.0,
'PZ_148': 0.0,
'E_149': 0.0,
'PX_149': 0.0,
'PY_149': 0.0,
'PZ_149': 0.0,
'E_150': 0.0,
'PX_150': 0.0,
'PY_150': 0.0,
'PZ_150': 0.0,
'E_151': 0.0,
'PX_151': 0.0,
'PY_151': 0.0,
'PZ_151': 0.0,
'E_152': 0.0,
'PX_152': 0.0,
'PY_152': 0.0,
'PZ_152': 0.0,
'E_153': 0.0,
'PX_153': 0.0,
'PY_153': 0.0,
'PZ_153': 0.0,
'E_154': 0.0,
'PX_154': 0.0,
'PY_154': 0.0,
'PZ_154': 0.0,
'E_155': 0.0,
'PX_155': 0.0,
'PY_155': 0.0,
'PZ_155': 0.0,
'E_156': 0.0,
'PX_156': 0.0,
'PY_156': 0.0,
'PZ_156': 0.0,
'E_157': 0.0,
'PX_157': 0.0,
'PY_157': 0.0,
'PZ_157': 0.0,
'E_158': 0.0,
'PX_158': 0.0,
'PY_158': 0.0,
'PZ_158': 0.0,
'E_159': 0.0,
'PX_159': 0.0,
'PY_159': 0.0,
'PZ_159': 0.0,
'E_160': 0.0,
'PX_160': 0.0,
'PY_160': 0.0,
'PZ_160': 0.0,
'E_161': 0.0,
'PX_161': 0.0,
'PY_161': 0.0,
'PZ_161': 0.0,
'E_162': 0.0,
'PX_162': 0.0,
'PY_162': 0.0,
'PZ_162': 0.0,
'E_163': 0.0,
'PX_163': 0.0,
'PY_163': 0.0,
'PZ_163': 0.0,
'E_164': 0.0,
'PX_164': 0.0,
'PY_164': 0.0,
'PZ_164': 0.0,
'E_165': 0.0,
'PX_165': 0.0,
'PY_165': 0.0,
'PZ_165': 0.0,
'E_166': 0.0,
'PX_166': 0.0,
'PY_166': 0.0,
'PZ_166': 0.0,
'E_167': 0.0,
'PX_167': 0.0,
'PY_167': 0.0,
'PZ_167': 0.0,
'E_168': 0.0,
'PX_168': 0.0,
'PY_168': 0.0,
'PZ_168': 0.0,
'E_169': 0.0,
'PX_169': 0.0,
'PY_169': 0.0,
'PZ_169': 0.0,
'E_170': 0.0,
'PX_170': 0.0,
'PY_170': 0.0,
'PZ_170': 0.0,
'E_171': 0.0,
'PX_171': 0.0,
'PY_171': 0.0,
'PZ_171': 0.0,
'E_172': 0.0,
'PX_172': 0.0,
'PY_172': 0.0,
'PZ_172': 0.0,
'E_173': 0.0,
'PX_173': 0.0,
'PY_173': 0.0,
'PZ_173': 0.0,
'E_174': 0.0,
'PX_174': 0.0,
'PY_174': 0.0,
'PZ_174': 0.0,
'E_175': 0.0,
'PX_175': 0.0,
'PY_175': 0.0,
'PZ_175': 0.0,
'E_176': 0.0,
'PX_176': 0.0,
'PY_176': 0.0,
'PZ_176': 0.0,
'E_177': 0.0,
'PX_177': 0.0,
'PY_177': 0.0,
'PZ_177': 0.0,
'E_178': 0.0,
'PX_178': 0.0,
'PY_178': 0.0,
'PZ_178': 0.0,
'E_179': 0.0,
'PX_179': 0.0,
'PY_179': 0.0,
'PZ_179': 0.0,
'E_180': 0.0,
'PX_180': 0.0,
'PY_180': 0.0,
'PZ_180': 0.0,
'E_181': 0.0,
'PX_181': 0.0,
'PY_181': 0.0,
'PZ_181': 0.0,
'E_182': 0.0,
'PX_182': 0.0,
'PY_182': 0.0,
'PZ_182': 0.0,
'E_183': 0.0,
'PX_183': 0.0,
'PY_183': 0.0,
'PZ_183': 0.0,
'E_184': 0.0,
'PX_184': 0.0,
'PY_184': 0.0,
'PZ_184': 0.0,
'E_185': 0.0,
'PX_185': 0.0,
'PY_185': 0.0,
'PZ_185': 0.0,
'E_186': 0.0,
'PX_186': 0.0,
'PY_186': 0.0,
'PZ_186': 0.0,
'E_187': 0.0,
'PX_187': 0.0,
'PY_187': 0.0,
'PZ_187': 0.0,
'E_188': 0.0,
'PX_188': 0.0,
'PY_188': 0.0,
'PZ_188': 0.0,
'E_189': 0.0,
'PX_189': 0.0,
'PY_189': 0.0,
'PZ_189': 0.0,
'E_190': 0.0,
'PX_190': 0.0,
'PY_190': 0.0,
'PZ_190': 0.0,
'E_191': 0.0,
'PX_191': 0.0,
'PY_191': 0.0,
'PZ_191': 0.0,
'E_192': 0.0,
'PX_192': 0.0,
'PY_192': 0.0,
'PZ_192': 0.0,
'E_193': 0.0,
'PX_193': 0.0,
'PY_193': 0.0,
'PZ_193': 0.0,
'E_194': 0.0,
'PX_194': 0.0,
'PY_194': 0.0,
'PZ_194': 0.0,
'E_195': 0.0,
'PX_195': 0.0,
'PY_195': 0.0,
'PZ_195': 0.0,
'E_196': 0.0,
'PX_196': 0.0,
'PY_196': 0.0,
'PZ_196': 0.0,
'E_197': 0.0,
'PX_197': 0.0,
'PY_197': 0.0,
'PZ_197': 0.0,
'E_198': 0.0,
'PX_198': 0.0,
'PY_198': 0.0,
'PZ_198': 0.0,
'E_199': 0.0,
'PX_199': 0.0,
'PY_199': 0.0,
'PZ_199': 0.0,
'truthE': 0.0,
'truthPX': 0.0,
'truthPY': 0.0,
'truthPZ': 0.0,
'ttv': 0,
'is_signal_new': 0}
Here we see that a single row is repesented as a dictionary where the keys correspond to the column names. Since we won’t need the top-quark 4-vector columns, let’s remove them along with the ttv
one:
top_tagging_ds = top_tagging_ds.remove_columns(
["truthE", "truthPX", "truthPY", "truthPZ", "ttv"]
)
Although 🤗 Datasets provides a lot of low-level functionality for preprocessing datasets, it is often conventient to convert a Dataset
object to a Pandas DataFrame
. To enable the conversion, 🤗 Datasets provides a set_format()
method that allows us to change the output format of the dataset:
# Convert output format to DataFrames
top_tagging_ds.set_format("pandas")
# Create DataFrames for the training and test splits
train_df, test_df = top_tagging_ds["train"][:], top_tagging_ds["test"][:]
# Peek at first few rows
train_df.head()
E_0 | PX_0 | PY_0 | PZ_0 | E_1 | PX_1 | PY_1 | PZ_1 | E_2 | PX_2 | ... | PZ_197 | E_198 | PX_198 | PY_198 | PZ_198 | E_199 | PX_199 | PY_199 | PZ_199 | is_signal_new | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 474.071136 | -250.347031 | -223.651962 | -334.738098 | 103.236237 | -48.866222 | -56.790775 | -71.025490 | 105.255569 | -55.415001 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
1 | 150.504532 | 120.062393 | 76.852005 | -48.274265 | 82.257057 | 63.801739 | 42.754807 | -29.454842 | 48.573559 | 36.763199 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
2 | 251.645386 | 10.427651 | -147.573746 | 203.564880 | 104.147797 | 10.718256 | -54.497948 | 88.101395 | 78.043213 | 5.724113 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
3 | 451.566132 | 129.885437 | -99.066292 | -420.984100 | 208.410919 | 59.033958 | -46.177090 | -194.467941 | 190.183304 | 54.069675 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
4 | 399.093903 | -168.432083 | -47.205597 | -358.717438 | 273.691956 | -121.926941 | -30.803854 | -243.088928 | 152.837219 | -44.400204 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
5 rows × 801 columns
As we can see, each row consists of 4-vectors \((E_i, p_{x_i}, p_{y_i}, p_{z_i})\) that correspond to the maximum 200 particles that make up each jet. We can also see that each jet has been padded with zeros, since most won’t have 200 particles. We also have an is_signal_new
column that indicates whether the jet is a top quark signal (1) or QCD background (0).
Now that we’ve had a look at a sample of the raw data, let’s take a look at how we can convert it to a format that is suitable for neural networks!
Introducing fastai#
To train our model, we’ll use the fastai library. fastai is the most popular framework for training deep neural networks with PyTorch and provides various application-specific classes for different types of deep learning data structures and architectures. It is also designed with a layered API, which means:
We can use high-level components to quickly and easily get state-of-the-art results in standard deep learning domains
Low-level components can be mixed and matched to build new approaches
In particular, this approach will allow us in later lessons to use pure PyTorch code to define our models, and then let fastai take care of the training loop (which is often an error-prone process).
Basics of the API
The most common steps one takes when training a model in fastai are:
Create
DataLoaders
to feed batches of data to the modelCreate a
Learner
which wraps the architecture, optimizer, and data, and automatically chooses an appropriate loss function where possibleFind a good learning rate
Train your model
Evaluate your model
Let’s go through each of these steps to build a neural network that can classify top quark jets from the QCD background!
From data to DataLoaders#
To wrangle our data in a format that’s suitable for training neural nets, we need to create an object called DataLoaders
. To turn our dataset into a DataLoaders
object we need to specify:
What type of data we are dealing with (tabular, images, etc)
How to get the examples
How to label each example
How to create the validation set
fastai provides a number of classes for different kinds of deep learning datasets and problems. In our case, the data is in a tabular format (i.e. a table of rows and columns), so we can use the TabularDataLoaders
class:
# Downsample to ~0.5 if you're running on Colab / Kaggle which have limited RAM
frac_of_samples = 1.0
train_df = train_df.sample(int(frac_of_samples * len(train_df)), random_state=42)
features = list(train_df.drop(columns=["is_signal_new"]).columns)
splits = RandomSplitter(valid_pct=0.20, seed=42)(range_of(train_df))
dls = TabularDataLoaders.from_df(
df=train_df,
cont_names=features,
y_names="is_signal_new",
y_block=CategoryBlock,
splits=splits,
bs=1024,
)
Let’s unpack this code a bit. The first thing we’ve specified is which columns of our dataset correspond to continuous features via the cont_names
argument. To do this, we’ve simply grabbed all column names from our DataFrame
, except for the label column is_signal_new
. Next, we’ve specified which column is the target in y_names
and that this is a categorical feature with CategoryBlock
. Finally we’ve specified the training and validation splits with RandomSplitter
and picked a batch size of 1,024 examples.
After we’ve defined a DataLoaders
object, we can take a look at the data by using the show_batch()
method:
dls.show_batch()
E_0 | PX_0 | PY_0 | PZ_0 | E_1 | PX_1 | PY_1 | PZ_1 | E_2 | PX_2 | PY_2 | PZ_2 | E_3 | PX_3 | PY_3 | PZ_3 | E_4 | PX_4 | PY_4 | PZ_4 | E_5 | PX_5 | PY_5 | PZ_5 | E_6 | PX_6 | PY_6 | PZ_6 | E_7 | PX_7 | PY_7 | PZ_7 | E_8 | PX_8 | PY_8 | PZ_8 | E_9 | PX_9 | PY_9 | PZ_9 | E_10 | PX_10 | PY_10 | PZ_10 | E_11 | PX_11 | PY_11 | PZ_11 | E_12 | PX_12 | PY_12 | PZ_12 | E_13 | PX_13 | PY_13 | PZ_13 | E_14 | PX_14 | PY_14 | PZ_14 | E_15 | PX_15 | PY_15 | PZ_15 | E_16 | PX_16 | PY_16 | PZ_16 | E_17 | PX_17 | PY_17 | PZ_17 | E_18 | PX_18 | PY_18 | PZ_18 | E_19 | PX_19 | PY_19 | PZ_19 | E_20 | PX_20 | PY_20 | PZ_20 | E_21 | PX_21 | PY_21 | PZ_21 | E_22 | PX_22 | PY_22 | PZ_22 | E_23 | PX_23 | PY_23 | PZ_23 | E_24 | PX_24 | PY_24 | PZ_24 | E_25 | PX_25 | PY_25 | PZ_25 | E_26 | PX_26 | PY_26 | PZ_26 | E_27 | PX_27 | PY_27 | PZ_27 | E_28 | PX_28 | PY_28 | PZ_28 | E_29 | PX_29 | PY_29 | PZ_29 | E_30 | PX_30 | PY_30 | PZ_30 | E_31 | PX_31 | PY_31 | PZ_31 | E_32 | PX_32 | PY_32 | PZ_32 | E_33 | PX_33 | PY_33 | PZ_33 | E_34 | PX_34 | PY_34 | PZ_34 | E_35 | PX_35 | PY_35 | PZ_35 | E_36 | PX_36 | PY_36 | PZ_36 | E_37 | PX_37 | PY_37 | PZ_37 | E_38 | PX_38 | PY_38 | PZ_38 | E_39 | PX_39 | PY_39 | PZ_39 | E_40 | PX_40 | PY_40 | PZ_40 | E_41 | PX_41 | PY_41 | PZ_41 | E_42 | PX_42 | PY_42 | PZ_42 | E_43 | PX_43 | PY_43 | PZ_43 | E_44 | PX_44 | PY_44 | PZ_44 | E_45 | PX_45 | PY_45 | PZ_45 | E_46 | PX_46 | PY_46 | PZ_46 | E_47 | PX_47 | PY_47 | PZ_47 | E_48 | PX_48 | PY_48 | PZ_48 | E_49 | PX_49 | PY_49 | PZ_49 | E_50 | PX_50 | PY_50 | PZ_50 | E_51 | PX_51 | PY_51 | PZ_51 | E_52 | PX_52 | PY_52 | PZ_52 | E_53 | PX_53 | PY_53 | PZ_53 | E_54 | PX_54 | PY_54 | PZ_54 | E_55 | PX_55 | PY_55 | PZ_55 | E_56 | PX_56 | PY_56 | PZ_56 | E_57 | PX_57 | PY_57 | PZ_57 | E_58 | PX_58 | PY_58 | PZ_58 | E_59 | PX_59 | PY_59 | PZ_59 | E_60 | PX_60 | PY_60 | PZ_60 | E_61 | PX_61 | PY_61 | PZ_61 | E_62 | PX_62 | PY_62 | PZ_62 | E_63 | PX_63 | PY_63 | PZ_63 | E_64 | PX_64 | PY_64 | PZ_64 | E_65 | PX_65 | PY_65 | PZ_65 | E_66 | PX_66 | PY_66 | PZ_66 | E_67 | PX_67 | PY_67 | PZ_67 | E_68 | PX_68 | PY_68 | PZ_68 | E_69 | PX_69 | PY_69 | PZ_69 | E_70 | PX_70 | PY_70 | PZ_70 | E_71 | PX_71 | PY_71 | PZ_71 | E_72 | PX_72 | PY_72 | PZ_72 | E_73 | PX_73 | PY_73 | PZ_73 | E_74 | PX_74 | PY_74 | PZ_74 | E_75 | PX_75 | PY_75 | PZ_75 | E_76 | PX_76 | PY_76 | PZ_76 | E_77 | PX_77 | PY_77 | PZ_77 | E_78 | PX_78 | PY_78 | PZ_78 | E_79 | PX_79 | PY_79 | PZ_79 | E_80 | PX_80 | PY_80 | PZ_80 | E_81 | PX_81 | PY_81 | PZ_81 | E_82 | PX_82 | PY_82 | PZ_82 | E_83 | PX_83 | PY_83 | PZ_83 | E_84 | PX_84 | PY_84 | PZ_84 | E_85 | PX_85 | PY_85 | PZ_85 | E_86 | PX_86 | PY_86 | PZ_86 | E_87 | PX_87 | PY_87 | PZ_87 | E_88 | PX_88 | PY_88 | PZ_88 | E_89 | PX_89 | PY_89 | PZ_89 | E_90 | PX_90 | PY_90 | PZ_90 | E_91 | PX_91 | PY_91 | PZ_91 | E_92 | PX_92 | PY_92 | PZ_92 | E_93 | PX_93 | PY_93 | PZ_93 | E_94 | PX_94 | PY_94 | PZ_94 | E_95 | PX_95 | PY_95 | PZ_95 | E_96 | PX_96 | PY_96 | PZ_96 | E_97 | PX_97 | PY_97 | PZ_97 | E_98 | PX_98 | PY_98 | PZ_98 | E_99 | PX_99 | PY_99 | PZ_99 | E_100 | PX_100 | PY_100 | PZ_100 | E_101 | PX_101 | PY_101 | PZ_101 | E_102 | PX_102 | PY_102 | PZ_102 | E_103 | PX_103 | PY_103 | PZ_103 | E_104 | PX_104 | PY_104 | PZ_104 | E_105 | PX_105 | PY_105 | PZ_105 | E_106 | PX_106 | PY_106 | PZ_106 | E_107 | PX_107 | PY_107 | PZ_107 | E_108 | PX_108 | PY_108 | PZ_108 | E_109 | PX_109 | PY_109 | PZ_109 | E_110 | PX_110 | PY_110 | PZ_110 | E_111 | PX_111 | PY_111 | PZ_111 | E_112 | PX_112 | PY_112 | PZ_112 | E_113 | PX_113 | PY_113 | PZ_113 | E_114 | PX_114 | PY_114 | PZ_114 | E_115 | PX_115 | PY_115 | PZ_115 | E_116 | PX_116 | PY_116 | PZ_116 | E_117 | PX_117 | PY_117 | PZ_117 | E_118 | PX_118 | PY_118 | PZ_118 | E_119 | PX_119 | PY_119 | PZ_119 | E_120 | PX_120 | PY_120 | PZ_120 | E_121 | PX_121 | PY_121 | PZ_121 | E_122 | PX_122 | PY_122 | PZ_122 | E_123 | PX_123 | PY_123 | PZ_123 | E_124 | PX_124 | PY_124 | PZ_124 | E_125 | PX_125 | PY_125 | PZ_125 | E_126 | PX_126 | PY_126 | PZ_126 | E_127 | PX_127 | PY_127 | PZ_127 | E_128 | PX_128 | PY_128 | PZ_128 | E_129 | PX_129 | PY_129 | PZ_129 | E_130 | PX_130 | PY_130 | PZ_130 | E_131 | PX_131 | PY_131 | PZ_131 | E_132 | PX_132 | PY_132 | PZ_132 | E_133 | PX_133 | PY_133 | PZ_133 | E_134 | PX_134 | PY_134 | PZ_134 | E_135 | PX_135 | PY_135 | PZ_135 | E_136 | PX_136 | PY_136 | PZ_136 | E_137 | PX_137 | PY_137 | PZ_137 | E_138 | PX_138 | PY_138 | PZ_138 | E_139 | PX_139 | PY_139 | PZ_139 | E_140 | PX_140 | PY_140 | PZ_140 | E_141 | PX_141 | PY_141 | PZ_141 | E_142 | PX_142 | PY_142 | PZ_142 | E_143 | PX_143 | PY_143 | PZ_143 | E_144 | PX_144 | PY_144 | PZ_144 | E_145 | PX_145 | PY_145 | PZ_145 | E_146 | PX_146 | PY_146 | PZ_146 | E_147 | PX_147 | PY_147 | PZ_147 | E_148 | PX_148 | PY_148 | PZ_148 | E_149 | PX_149 | PY_149 | PZ_149 | E_150 | PX_150 | PY_150 | PZ_150 | E_151 | PX_151 | PY_151 | PZ_151 | E_152 | PX_152 | PY_152 | PZ_152 | E_153 | PX_153 | PY_153 | PZ_153 | E_154 | PX_154 | PY_154 | PZ_154 | E_155 | PX_155 | PY_155 | PZ_155 | E_156 | PX_156 | PY_156 | PZ_156 | E_157 | PX_157 | PY_157 | PZ_157 | E_158 | PX_158 | PY_158 | PZ_158 | E_159 | PX_159 | PY_159 | PZ_159 | E_160 | PX_160 | PY_160 | PZ_160 | E_161 | PX_161 | PY_161 | PZ_161 | E_162 | PX_162 | PY_162 | PZ_162 | E_163 | PX_163 | PY_163 | PZ_163 | E_164 | PX_164 | PY_164 | PZ_164 | E_165 | PX_165 | PY_165 | PZ_165 | E_166 | PX_166 | PY_166 | PZ_166 | E_167 | PX_167 | PY_167 | PZ_167 | E_168 | PX_168 | PY_168 | PZ_168 | E_169 | PX_169 | PY_169 | PZ_169 | E_170 | PX_170 | PY_170 | PZ_170 | E_171 | PX_171 | PY_171 | PZ_171 | E_172 | PX_172 | PY_172 | PZ_172 | E_173 | PX_173 | PY_173 | PZ_173 | E_174 | PX_174 | PY_174 | PZ_174 | E_175 | PX_175 | PY_175 | PZ_175 | E_176 | PX_176 | PY_176 | PZ_176 | E_177 | PX_177 | PY_177 | PZ_177 | E_178 | PX_178 | PY_178 | PZ_178 | E_179 | PX_179 | PY_179 | PZ_179 | E_180 | PX_180 | PY_180 | PZ_180 | E_181 | PX_181 | PY_181 | PZ_181 | E_182 | PX_182 | PY_182 | PZ_182 | E_183 | PX_183 | PY_183 | PZ_183 | E_184 | PX_184 | PY_184 | PZ_184 | E_185 | PX_185 | PY_185 | PZ_185 | E_186 | PX_186 | PY_186 | PZ_186 | E_187 | PX_187 | PY_187 | PZ_187 | E_188 | PX_188 | PY_188 | PZ_188 | E_189 | PX_189 | PY_189 | PZ_189 | E_190 | PX_190 | PY_190 | PZ_190 | E_191 | PX_191 | PY_191 | PZ_191 | E_192 | PX_192 | PY_192 | PZ_192 | E_193 | PX_193 | PY_193 | PZ_193 | E_194 | PX_194 | PY_194 | PZ_194 | E_195 | PX_195 | PY_195 | PZ_195 | E_196 | PX_196 | PY_196 | PZ_196 | E_197 | PX_197 | PY_197 | PZ_197 | E_198 | PX_198 | PY_198 | PZ_198 | E_199 | PX_199 | PY_199 | PZ_199 | is_signal_new | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 156.651123 | 147.405258 | 26.006823 | -46.205074 | 66.166000 | 61.714252 | 13.618260 | -19.591679 | 59.187538 | 43.524006 | 18.544239 | -35.565948 | 52.280418 | 39.901722 | 14.766282 | -30.381767 | 46.479649 | 37.455952 | -4.363357 | -27.172979 | 37.165035 | 35.369465 | 1.354363 | -11.331660 | 36.232121 | 27.362452 | 10.842762 | -21.130484 | 35.059006 | 26.817917 | 10.583280 | -19.948118 | 27.499258 | 21.504807 | -7.419861 | -15.449861 | 24.723345 | 18.445026 | 7.439287 | -14.686109 | 21.618416 | 17.497467 | 5.555872 | -11.416079 | 20.788595 | 15.854955 | 6.082806 | -11.991064 | 18.213100 | 13.441398 | 6.698515 | -10.304162 | 12.677663 | 12.036289 | 2.944411 | -2.679800 | 12.660934 | 11.887339 | 1.900199 | -3.921694 | 9.484063 | 7.706819 | 2.073808 | -5.123643 | 8.043362 | 6.180357 | 2.354782 | -4.577538 | 7.829610 | 5.816335 | 2.422960 | -4.647829 | 7.204622 | 5.786285 | -0.912594 | -4.194359 | 6.569118 | 4.983078 | -0.247118 | -4.273309 | 5.204410 | 4.723341 | 0.999273 | -1.943549 | 5.212553 | 4.281167 | 1.108515 | -2.759259 | 5.343522 | 4.059355 | 1.723231 | -3.017504 | 3.995430 | 2.993573 | 1.290984 | -2.309836 | 3.862169 | 3.138426 | 0.844511 | -2.086487 | 3.488208 | 3.158298 | 0.699826 | -1.304989 | 2.978119 | 2.682876 | -0.341816 | -1.246809 | 3.168274 | 2.370644 | -0.752072 | -1.962752 | 2.761582 | 2.272017 | 0.939171 | -1.257868 | 3.092704 | 2.281398 | -0.749264 | -1.949011 | 3.142989 | 2.093421 | 1.106632 | -2.066720 | 2.061056 | 1.755722 | 0.585744 | -0.906805 | 2.281940 | 1.579042 | -0.750299 | -1.466605 | 1.614905 | 1.292173 | -0.374225 | -0.893399 | 1.415592 | 1.206074 | 0.533570 | -0.514383 | 1.675033 | 1.266876 | 0.103127 | -1.090928 | 1.120713 | 1.010384 | 0.072985 | -0.479369 | 0.886037 | 0.871607 | 0.097665 | -0.125795 | 0.932767 | 0.800974 | 0.097008 | -0.468065 | 1.065342 | 0.602590 | 0.389746 | -0.787360 | 0.728177 | 0.659168 | 0.136783 | -0.277542 | 0.746282 | 0.631983 | 0.138891 | -0.371811 | 0.668374 | 0.626190 | -0.143476 | -0.184459 | 0.616981 | 0.575796 | 0.220805 | -0.019220 | 0.595697 | 0.543712 | -0.019745 | -0.242575 | 0.647482 | 0.387422 | 0.197245 | -0.479825 | 0.660883 | 0.346850 | 0.072733 | -0.557828 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
1 | 217.770920 | 112.669815 | -55.818962 | -177.803070 | 169.487793 | 57.047081 | -86.189850 | -134.324432 | 79.572060 | 52.154568 | -31.429808 | -51.222851 | 56.272415 | 34.468712 | -25.402637 | -36.512993 | 47.898685 | 33.165764 | -16.905451 | -30.141701 | 38.172230 | 26.431019 | -13.472577 | -24.021032 | 43.246582 | 14.914506 | -23.153084 | -33.343048 | 42.543930 | 22.392347 | -10.330865 | -34.667595 | 32.264137 | 20.407352 | -13.483160 | -21.040884 | 28.707653 | 18.947687 | -11.550921 | -18.212378 | 17.897223 | 10.066465 | -7.947463 | -12.482575 | 15.136470 | 9.821433 | -5.684728 | -10.016788 | 12.714173 | 7.650305 | -4.211721 | -9.240370 | 10.947527 | 6.395720 | -3.739368 | -8.059792 | 9.969221 | 6.233003 | -3.332090 | -7.030806 | 9.037607 | 5.644869 | -2.770133 | -6.491545 | 9.774871 | 3.194082 | -5.116557 | -7.691995 | 7.610077 | 4.280361 | -3.379340 | -5.307716 | 7.548386 | 4.600593 | -2.243847 | -5.547777 | 7.722602 | 4.280883 | -2.738911 | -5.814722 | 7.851254 | 2.219324 | -3.738460 | -6.537639 | 7.487554 | 3.762560 | -2.020533 | -6.150126 | 3.724781 | 2.421021 | -1.775541 | -2.204564 | 3.201555 | 2.680049 | -1.256285 | -1.220262 | 3.649110 | 2.674477 | -1.156612 | -2.196685 | 3.758146 | 2.474789 | -1.060927 | -2.621739 | 3.019944 | 1.376533 | -1.026755 | -2.484149 | 2.923555 | 1.332597 | -0.993983 | -2.404861 | 2.215418 | 1.350253 | -0.658559 | -1.628248 | 1.959735 | 0.949403 | -0.752075 | -1.540642 | 0.888710 | 0.648152 | -0.440543 | -0.419079 | 0.848160 | 0.685332 | -0.233436 | -0.441818 | 0.675687 | 0.371343 | -0.327507 | -0.459779 | 0.911277 | 0.391090 | -0.264506 | -0.779430 | 0.496820 | 0.104868 | -0.304911 | -0.377972 | 0.500294 | 0.158566 | -0.132538 | -0.455614 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
2 | 197.560150 | -56.235020 | 167.053986 | 89.222221 | 165.007935 | -46.307407 | 140.065323 | 73.925278 | 58.558525 | 7.904080 | 38.231747 | 43.645844 | 24.165867 | -7.660753 | 20.127789 | 10.962393 | 31.479214 | 6.973133 | 20.029806 | 23.262056 | 25.901262 | 3.065581 | 17.752800 | 18.609558 | 19.532864 | 2.014424 | 13.778230 | 13.698002 | 15.889723 | 1.921973 | 10.279412 | 11.963403 | 11.679363 | -2.999971 | 9.845611 | 5.520113 | 15.129631 | 2.799529 | 9.602891 | 11.351337 | 10.367282 | -4.385475 | 7.676659 | 5.414523 | 10.548188 | 1.402773 | 7.611049 | 7.167179 | 10.266623 | 1.767461 | 7.162259 | 7.140145 | 10.980591 | 1.992374 | 7.085339 | 8.148730 | 8.134279 | -1.721148 | 6.898781 | 3.951072 | 10.490783 | 1.322561 | 6.552466 | 8.085329 | 10.063974 | 1.033956 | 6.523703 | 7.593143 | 6.653511 | -2.662420 | 5.401315 | 2.829580 | 7.802452 | 0.912603 | 5.774929 | 5.166779 | 6.776989 | -4.736222 | 3.121546 | 3.708334 | 7.355442 | 0.376328 | 5.583453 | 4.773464 | 7.668360 | 1.090786 | 5.371960 | 5.362460 | 5.996251 | 1.288733 | 4.357318 | 3.912539 | 5.400266 | 1.283929 | 4.101466 | 3.269920 | 4.625764 | 0.696765 | 3.567205 | 2.861340 | 4.286886 | -0.753782 | 3.452291 | 2.427115 | 4.278675 | 0.500963 | 3.018395 | 2.990884 | 3.064641 | -1.061758 | 2.513021 | 1.396214 | 2.755710 | -0.583086 | 2.337152 | 1.338534 | 2.760834 | 0.142814 | 2.016001 | 1.880838 | 2.745739 | -0.898090 | 1.681090 | 1.976475 | 2.824965 | -0.544976 | 1.690960 | 2.196380 | 2.142634 | -1.143083 | 1.296435 | 1.266293 | 2.576994 | 0.463196 | 1.605608 | 1.961727 | 2.119251 | 0.168004 | 1.398939 | 1.583024 | 1.918472 | 0.472835 | 1.186520 | 1.431480 | 1.664753 | 0.230758 | 1.224832 | 1.103603 | 1.378997 | -0.583331 | 1.021106 | 0.720209 | 1.180363 | -0.468122 | 0.946170 | 0.528092 | 1.263083 | 0.311305 | 0.781181 | 0.942457 | 1.097036 | 0.266244 | 0.731841 | 0.772664 | 1.048604 | -0.213505 | 0.648294 | 0.796054 | 1.238005 | -0.316156 | 0.560488 | 1.057617 | 0.870312 | -0.057704 | 0.548431 | 0.673304 | 0.437953 | 0.123507 | 0.333553 | 0.255522 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
3 | 610.647827 | 226.345108 | 380.794891 | 420.302155 | 63.992065 | 20.026573 | 40.651062 | 45.181984 | 34.088505 | 12.317686 | 21.222988 | 23.661900 | 19.412596 | 7.212401 | 11.676986 | 13.728735 | 12.422605 | 4.078647 | 7.691472 | 8.861547 | 8.593320 | 3.107085 | 5.503000 | 5.823071 | 8.785389 | 1.611511 | 5.721509 | 6.469190 | 6.476299 | 2.561637 | 3.974964 | 4.424943 | 6.261754 | 2.436332 | 4.014475 | 4.142202 | 4.367147 | -0.180545 | 3.841729 | 2.068937 | 5.324480 | 1.876532 | 2.614121 | 4.242061 | 3.464139 | 1.269829 | 2.293913 | 2.264013 | 3.984544 | 1.646987 | 2.019110 | 3.014501 | 3.175199 | 1.474765 | 1.881939 | 2.089322 | 2.759936 | -0.058105 | 2.299892 | 1.524586 | 3.104477 | 0.312899 | 1.925831 | 2.414755 | 1.867687 | 0.454739 | 1.536920 | 0.958824 | 2.131482 | 0.814061 | 1.346203 | 1.438144 | 2.045079 | 0.624774 | 1.419305 | 1.333259 | 1.957313 | 0.909101 | 1.160098 | 1.287937 | 1.731558 | 0.245909 | 1.255657 | 1.166682 | 1.484838 | 0.382009 | 1.185589 | 0.808202 | 2.347440 | 0.466752 | 1.148688 | 1.993272 | 1.491139 | 0.204910 | 1.188494 | 0.876921 | 1.666883 | 0.304074 | 0.909618 | 1.363317 | 1.286895 | 0.051610 | 0.841874 | 0.971948 | 0.931831 | -0.012308 | 0.794448 | 0.486837 | 0.872798 | 0.092387 | 0.769380 | 0.401616 | 1.031228 | 0.033445 | 0.730115 | 0.727493 | 0.881844 | 0.453599 | 0.541407 | 0.527991 | 0.791480 | 0.007617 | 0.681956 | 0.401644 | 0.905531 | 0.234966 | 0.577660 | 0.656571 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
4 | 267.671173 | -102.091461 | -158.199081 | -190.258362 | 186.682709 | -106.923073 | -120.735558 | -94.025612 | 43.500698 | -25.432400 | -32.653172 | -13.389325 | 33.176712 | -16.007950 | -26.435410 | -12.066850 | 25.473227 | -16.826694 | -14.994489 | -11.870672 | 22.224855 | -12.763152 | -14.124808 | -11.468911 | 22.096191 | -11.916757 | -13.761514 | -12.524111 | 20.754120 | -11.957877 | -13.286635 | -10.545519 | 8.926038 | -4.627290 | -6.742624 | -3.577618 | 9.328678 | -5.104222 | -6.056514 | -4.928466 | 8.100491 | -4.943729 | -4.181729 | -4.867303 | 6.637937 | -4.049828 | -3.903955 | -3.524235 | 5.622627 | -2.480986 | -4.644761 | -1.971001 | 7.360441 | -2.632272 | -4.206151 | -5.436500 | 6.706080 | -2.552033 | -3.882224 | -4.836009 | 6.284374 | -2.633040 | -3.749263 | -4.301568 | 4.440441 | -2.336462 | -3.143116 | -2.092673 | 3.807630 | -2.125382 | -2.990122 | -1.019787 | 4.108629 | -2.040272 | -2.983819 | -1.953190 | 4.327999 | -2.688244 | -2.379228 | -2.417477 | 4.888242 | -2.052459 | -2.825049 | -3.420734 | 2.397446 | -1.613496 | -1.423905 | -1.056823 | 1.777853 | -0.819084 | -1.452035 | -0.617621 | 2.864586 | -0.385838 | -1.549062 | -2.378527 | 2.145798 | -0.754262 | -0.644166 | -1.902784 | 1.232828 | -0.363937 | -0.790984 | -0.872789 | 0.577701 | -0.361531 | -0.389291 | -0.226905 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
5 | 164.499893 | 99.829689 | 114.322830 | -63.439232 | 123.595650 | 73.272484 | 87.150879 | -48.080688 | 46.899860 | 29.951080 | 30.025049 | -20.025631 | 44.196377 | 26.861120 | 30.690706 | -17.025875 | 44.664692 | 16.855186 | 30.713501 | -27.704121 | 31.599348 | 18.721317 | 22.216320 | -12.428443 | 31.945690 | 25.068062 | 13.442268 | -14.540455 | 29.875772 | 26.329243 | 6.924061 | -12.304070 | 32.041317 | 9.733595 | 22.010416 | -21.152889 | 26.031197 | 15.625027 | 18.247799 | -10.024946 | 22.373161 | 7.985788 | 16.161669 | -13.250886 | 17.998421 | 15.480885 | 5.098110 | -7.635093 | 12.085132 | 10.545874 | 3.623783 | -4.658664 | 11.461868 | 7.127863 | 7.795332 | -4.449806 | 10.355254 | 9.125990 | 2.399951 | -4.264719 | 9.254187 | 3.680014 | 6.454139 | -5.517386 | 7.729150 | 4.620795 | 5.246796 | -3.295321 | 8.619956 | 3.220232 | 6.199579 | -5.049650 | 6.765135 | 5.536580 | 2.547601 | -2.936506 | 6.015748 | 1.827709 | 4.381334 | -3.694945 | 4.865225 | 3.817785 | 2.047214 | -2.214464 | 4.902287 | 1.720700 | 3.702501 | -2.713503 | 4.228647 | 2.289000 | 2.801015 | -2.190035 | 2.536126 | 1.562588 | 1.672837 | -1.091728 | 2.611094 | 1.076857 | 1.843695 | -1.502991 | 2.746674 | 1.359373 | 1.173785 | -2.078112 | 2.139244 | 1.714339 | 0.432192 | -1.204416 | 1.951081 | 0.655775 | 1.540169 | -1.002275 | 2.171378 | 0.748067 | 1.082292 | -1.727404 | 1.497544 | 1.267451 | 0.323287 | -0.729171 | 1.528786 | 1.284921 | 0.187024 | -0.806961 | 1.535819 | 1.136983 | 0.444848 | -0.931729 | 1.685910 | 0.422827 | 1.132676 | -1.174970 | 1.542091 | 0.713069 | 0.951747 | -0.981710 | 1.360734 | 0.912283 | 0.647170 | -0.774924 | 1.329683 | 0.369132 | 0.933771 | -0.871704 | 0.872655 | 0.632663 | 0.316496 | -0.510975 | 0.673151 | 0.473445 | 0.421085 | -0.227308 | 0.701269 | 0.168290 | 0.481972 | -0.480791 | 0.320729 | 0.179812 | 0.263012 | -0.036872 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
6 | 275.454407 | -122.148170 | 245.166122 | 29.129313 | 118.976463 | -54.020538 | 103.525024 | 22.798040 | 56.767715 | -25.233208 | 50.541958 | 5.600825 | 39.765671 | -17.675812 | 35.404541 | 3.923367 | 28.905994 | -12.309326 | 25.961252 | 3.170231 | 17.560022 | -7.289474 | 15.827994 | 2.166228 | 15.634098 | -6.248994 | 14.285532 | 1.139592 | 13.518690 | -4.890047 | 12.514712 | 1.491443 | 8.883497 | -3.600181 | 8.090115 | 0.710819 | 6.004735 | 0.449896 | 5.872437 | 1.170002 | 5.401881 | -2.026861 | 4.984735 | 0.473888 | 5.193821 | -2.154214 | 4.684274 | 0.626673 | 4.936502 | -2.095330 | 4.465212 | 0.201305 | 4.855865 | -1.840441 | 4.480408 | 0.343733 | 4.459344 | -2.125681 | 3.889884 | 0.485834 | 4.096872 | -1.933278 | 3.561832 | 0.600119 | 3.042507 | -1.206348 | 2.791826 | -0.085335 | 2.960997 | -0.065342 | 2.920553 | 0.483327 | 2.535212 | -0.774514 | 2.407406 | -0.178395 | 2.354776 | -0.906100 | 2.123487 | 0.463419 | 2.187518 | -0.917977 | 1.983081 | -0.099711 | 2.039711 | -0.906492 | 1.764101 | 0.476066 | 1.375132 | -0.661072 | 1.196265 | 0.151399 | 1.180829 | 0.083918 | 1.159590 | -0.206555 | 1.024851 | -0.611182 | 0.819252 | 0.074846 | 1.115528 | -0.765417 | 0.610163 | 0.535015 | 0.744857 | -0.101565 | 0.703446 | -0.222846 | 0.665840 | -0.228176 | 0.603181 | -0.165684 | 0.556547 | -0.100163 | 0.538030 | 0.101175 | 0.579779 | -0.117168 | 0.395411 | 0.407512 | 0.316470 | -0.109241 | 0.294108 | 0.041476 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
7 | 195.776382 | 71.457642 | -43.164070 | -177.084900 | 89.740707 | 31.712599 | -42.891129 | -72.166870 | 97.034958 | 28.485353 | -19.710289 | -90.641449 | 105.457581 | 29.350021 | -17.268545 | -99.808189 | 91.525826 | 26.652744 | -18.645784 | -85.550819 | 45.013363 | 17.892401 | -20.705256 | -35.740135 | 67.904793 | 21.080061 | -14.514310 | -62.896954 | 65.139336 | 19.158308 | -13.387456 | -60.801876 | 28.043575 | 10.094787 | -11.583507 | -23.459747 | 33.811947 | 12.049286 | -9.135211 | -30.242525 | 39.968479 | 11.967908 | -7.647948 | -37.359837 | 19.605148 | 6.826134 | -10.283878 | -15.231794 | 19.917049 | 7.889309 | -9.450686 | -15.656697 | 26.502373 | 8.925963 | -8.377806 | -23.505644 | 28.139923 | 10.174318 | -6.100360 | -25.517134 | 21.598833 | 8.947879 | -7.567963 | -18.143070 | 32.135963 | 9.605417 | -6.528434 | -29.963903 | 21.106709 | 7.316864 | -8.853605 | -17.707916 | 17.236910 | 6.328868 | -7.247945 | -14.301180 | 22.669622 | 6.760088 | -6.758747 | -20.555592 | 17.584393 | 6.982410 | -5.573163 | -15.145845 | 13.972600 | 4.864989 | -7.329326 | -10.855709 | 14.518909 | 5.529046 | -6.366781 | -11.819158 | 19.141750 | 6.333881 | -5.494456 | -17.207541 | 14.319798 | 6.128025 | -4.859442 | -11.995406 | 18.058144 | 5.734624 | -5.234973 | -16.303547 | 15.012374 | 5.689663 | -3.815546 | -13.358171 | 16.057026 | 5.201401 | -3.606006 | -14.757041 | 14.916764 | 5.126918 | -3.422858 | -13.583395 | 10.874345 | 4.409315 | -3.699378 | -9.226262 | 9.346753 | 3.026163 | -4.479315 | -7.624949 | 11.745160 | 4.989849 | -0.893933 | -10.594861 | 11.756345 | 4.166164 | -1.612040 | -10.874559 | 7.894176 | 3.271113 | -3.024977 | -6.516698 | 9.953744 | 2.944449 | -3.067981 | -8.999707 | 11.413699 | 3.805331 | -1.026229 | -10.711622 | 8.001363 | 2.741758 | -2.334764 | -7.145170 | 8.111948 | 3.066202 | -1.367840 | -7.384519 | 8.008175 | 2.509926 | -2.168585 | -7.288922 | 9.635747 | 3.264674 | -0.398368 | -9.057087 | 6.581693 | 2.098787 | -2.274143 | -5.808791 | 6.415633 | 2.281583 | -1.853963 | -5.702415 | 5.414214 | 2.242979 | -1.897073 | -4.547952 | 6.342005 | 2.173160 | -1.850571 | -5.663373 | 6.010907 | 1.867151 | -1.812217 | -5.418544 | 5.255612 | 2.101340 | -1.434451 | -4.598715 | 6.058692 | 2.138798 | -0.903120 | -5.596219 | 4.413128 | 1.552851 | -1.639159 | -3.79177 | 5.400943 | 1.975864 | -1.027184 | -4.920471 | 4.535516 | 2.191744 | -0.04438 | -3.970541 | 3.779752 | 1.223756 | -1.811399 | -3.083469 | 6.278596 | 2.127186 | -0.423808 | -5.892048 | 5.818707 | 1.999318 | -0.456253 | -5.445357 | 3.557932 | 1.409252 | -1.339549 | -2.979681 | 5.123084 | 1.30832 | -1.308706 | -4.777193 | 4.661511 | 1.370572 | -1.163642 | -4.300832 | 2.679124 | 1.142659 | -1.387828 | -1.986446 | 3.639842 | 0.980154 | -1.325995 | -3.244917 | 3.713544 | 1.413734 | -0.797830 | -3.339945 | 2.017078 | 1.468336 | -0.412986 | -1.319862 | 3.527530 | 1.128044 | -0.920737 | -3.212978 | 3.425990 | 1.389430 | -0.381687 | -3.108249 | 1.761514 | 0.426779 | -1.088822 | -1.317293 | 2.786923 | 0.932916 | -0.644128 | -2.545920 | 2.483886 | 1.029132 | -0.321483 | -2.237684 | 2.400906 | 0.922831 | 0.072338 | -2.215288 | 1.222659 | 0.834952 | -0.312236 | -0.836814 | 2.629696 | 0.828367 | -0.234595 | -2.484768 | 2.126755 | 0.712590 | -0.255136 | -1.987513 | 1.422644 | 0.582351 | -0.281356 | -1.267131 | 2.066752 | 0.381331 | -0.502643 | -1.968096 | 1.200118 | 0.479841 | -0.327557 | -1.050116 | 1.053963 | 0.365367 | -0.442104 | -0.884244 | 1.075273 | 0.508198 | -0.000647 | -0.947601 | 1.185643 | 0.295148 | -0.397664 | -1.077266 | 1.479972 | 0.452914 | -0.110404 | -1.404634 | 1.581326 | 0.422413 | -0.124003 | -1.51881 | 1.291269 | 0.402151 | 0.002812 | -1.227047 | 0.656545 | 0.290875 | -0.275079 | -0.52036 | 0.59395 | 0.143902 | -0.367131 | -0.444167 | 1.080945 | 0.380208 | -0.100681 | -1.00685 | 0.658771 | 0.354148 | -0.156366 | -0.533018 | 1.399878 | 0.162971 | -0.321637 | -1.352644 | 1.104601 | 0.268391 | -0.233508 | -1.045745 | 1.105273 | 0.325975 | -0.1373 | -1.047147 | 1.187471 | 0.241487 | -0.15016 | -1.15292 | 0.885596 | 0.166324 | -0.165458 | -0.853955 | 0.724353 | 0.151978 | -0.074951 | -0.704253 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
8 | 59.403610 | 41.055508 | -33.719429 | -26.575066 | 48.023834 | 40.540417 | -25.325750 | -4.622713 | 47.623581 | 40.172688 | -25.056154 | -5.133194 | 35.076084 | 34.462933 | -4.700911 | -4.532028 | 35.169415 | 24.306574 | -19.963308 | -15.733547 | 22.860498 | 18.416842 | -13.533061 | -0.527802 | 22.762016 | 21.673370 | -6.532049 | -2.388879 | 21.087252 | 17.847937 | -11.186087 | -0.997427 | 18.204227 | 17.811428 | -2.865510 | -2.436343 | 17.363245 | 16.520151 | -4.841825 | -2.263539 | 15.720620 | 12.664824 | -9.306363 | -0.362957 | 14.507853 | 10.184656 | -8.142515 | -6.360033 | 13.173553 | 11.744920 | -5.335850 | -2.669840 | 12.037468 | 11.905970 | -1.162715 | -1.340377 | 11.400192 | 9.603645 | -6.033511 | -1.153745 | 10.687634 | 9.820236 | -4.214749 | -0.156130 | 10.765874 | 8.830809 | -5.947473 | -1.596380 | 9.998008 | 9.060877 | -3.770721 | -1.908486 | 10.647401 | 7.320719 | -6.443269 | -4.272997 | 9.769657 | 8.575953 | -4.528944 | -1.178091 | 9.726794 | 9.184681 | -2.947534 | -1.250682 | 8.962761 | 7.351788 | -4.951365 | -1.329011 | 9.045572 | 5.860114 | -5.534487 | -4.104985 | 7.799853 | 6.898966 | -3.384279 | -1.337398 | 7.589919 | 7.217942 | -2.322251 | -0.339617 | 6.618104 | 6.475303 | -1.041749 | -0.885727 | 6.445922 | 5.841820 | -2.608860 | -0.785435 | 6.303173 | 5.880459 | -2.012818 | -1.048216 | 6.115631 | 5.616018 | -2.389849 | -0.387172 | 6.016768 | 5.741394 | -1.726236 | -0.507951 | 6.582354 | 3.213797 | -4.717912 | -3.277223 | 5.111702 | 5.041956 | -0.749910 | -0.381860 | 4.543345 | 4.468598 | -0.692640 | -0.440309 | 4.549988 | 4.033710 | -1.856231 | -0.992964 | 4.491254 | 3.125853 | -2.687415 | -1.782752 | 4.198073 | 2.618282 | -2.850502 | -1.625747 | 3.552185 | 2.808232 | -2.172750 | 0.104925 | 3.797282 | 2.665923 | -2.336805 | -1.360715 | 3.882375 | 2.666025 | -2.036456 | -1.953969 | 3.085772 | 2.756250 | -1.275881 | -0.545163 | 3.055829 | 1.976014 | -2.128738 | -0.949700 | 3.033531 | 2.217443 | -1.842004 | -0.944604 | 3.127451 | 2.226434 | -1.816478 | -1.234647 | 2.779321 | 2.721802 | -0.370564 | -0.423200 | 3.759017 | 2.410880 | -1.294332 | -2.577319 | 2.813013 | 1.806992 | -2.005503 | -0.791062 | 2.800653 | 2.178456 | -1.355162 | -1.123176 | 2.481514 | 2.173129 | -1.088288 | -0.50105 | 2.400734 | 2.313423 | -0.617865 | -0.172744 | 2.395828 | 2.278410 | -0.73304 | -0.107203 | 2.409425 | 2.258392 | -0.777159 | -0.317829 | 2.358977 | 2.272147 | -0.592347 | 0.226370 | 2.375695 | 2.239820 | -0.533427 | -0.585310 | 2.162638 | 2.148124 | -0.213261 | -0.130732 | 2.099411 | 1.46773 | -1.411818 | -0.509966 | 1.727220 | 1.635701 | -0.544216 | -0.107705 | 1.541837 | 1.498864 | -0.149107 | -0.329293 | 1.610131 | 1.107682 | -0.602702 | -1.001155 | 1.256446 | 1.116295 | -0.575927 | -0.029164 | 1.286798 | 0.692060 | -0.986721 | -0.450870 | 1.073181 | 0.527123 | -0.928199 | -0.110933 | 1.070529 | 0.900912 | -0.571988 | -0.084969 | 0.997909 | 0.895759 | -0.437355 | -0.046468 | 0.903666 | 0.737234 | -0.346682 | -0.391039 | 0.739323 | 0.653897 | -0.341555 | 0.048551 | 0.710355 | 0.478017 | -0.473676 | -0.227451 | 0.642361 | 0.465885 | -0.436092 | -0.073507 | 0.706375 | 0.309000 | -0.541972 | -0.331286 | 0.573909 | 0.555006 | 0.001055 | -0.146080 | 0.537981 | 0.472248 | -0.249393 | -0.064873 | 0.484754 | 0.408577 | -0.260669 | -0.010134 | 0.350200 | 0.182170 | -0.299083 | -0.001904 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
9 | 151.784470 | 0.949546 | 131.392471 | 75.984489 | 106.406952 | 0.097951 | 92.315750 | 52.917225 | 73.209137 | 1.746257 | 63.050304 | 37.164330 | 73.091263 | 1.297367 | 61.928951 | 38.800182 | 53.414776 | 0.531225 | 45.820644 | 27.446762 | 35.558651 | 0.306147 | 30.661337 | 18.005730 | 27.954166 | -0.050373 | 23.910858 | 14.481151 | 14.535252 | -0.025319 | 12.635176 | 7.185069 | 14.017663 | 0.100577 | 11.907260 | 7.396075 | 16.027166 | 0.939310 | 11.593787 | 11.025963 | 12.076696 | 0.419338 | 10.127374 | 6.565596 | 14.812226 | 0.261285 | 9.948937 | 10.970526 | 9.939997 | 0.096975 | 8.514777 | 5.127642 | 9.104223 | -0.080639 | 7.039525 | 5.772820 | 7.128007 | 0.364237 | 6.171385 | 3.548216 | 8.472843 | 0.282425 | 5.559115 | 6.387922 | 6.245513 | 0.174957 | 5.436501 | 3.069250 | 5.853168 | 0.487733 | 4.812369 | 3.295876 | 6.324660 | -0.116454 | 4.811591 | 4.103212 | 4.871553 | 0.481108 | 4.298071 | 2.242130 | 5.296984 | 0.249718 | 4.235509 | 3.171141 | 5.364757 | -0.288473 | 3.970162 | 3.596556 | 5.233563 | -0.014002 | 3.862339 | 3.531618 | 4.273739 | -0.099422 | 3.496274 | 2.455816 | 3.384312 | 1.009371 | 2.485349 | 2.063439 | 4.170475 | -0.155990 | 2.602640 | 3.254965 | 3.561823 | 0.072464 | 2.507604 | 2.528488 | 3.723295 | 0.337383 | 2.445301 | 2.787400 | 2.744171 | 0.090100 | 2.276320 | 1.529942 | 3.109154 | 0.366565 | 2.134917 | 2.230381 | 1.902180 | -0.438700 | 1.833718 | -0.251609 | 2.648119 | -0.254911 | 1.761903 | 1.960421 | 1.751961 | -0.780244 | 1.544798 | 0.272369 | 2.358303 | 0.538362 | 1.561525 | 1.683270 | 1.904660 | 1.039524 | 1.256800 | 0.983652 | 1.424168 | 0.096391 | 1.329254 | 0.502043 | 1.408695 | 0.064821 | 0.955400 | 1.033165 | 0.923758 | 0.337149 | 0.717163 | 0.474696 | 0.904179 | 0.380832 | 0.520913 | 0.633369 | 0.574015 | 0.301523 | 0.423995 | 0.242499 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
This looks like the format we want: we have a matrix of numerical features encoded in the 4-vectors, along with a target denoted by the is_signal_new
column.
Create a Learner#
We can now create the Learner
for this data. fastai provides various application-specific learner classes, each of which come with a set of good defaults for training. In our case, we’ll use the tabular_learner
class:
learn = tabular_learner(
dls, layers=[200, 200, 50, 50], metrics=[accuracy, RocAucBinary()]
)
By default, tabular_learner
creates a neural network with two hidden layers and 200 and 100 activations each. This works great for small datasets, but since our dataset is quite large, we’ve increased the depth of the network by adding two more layers. This also matches the architecture chosen in Section 3.2.2 of The Machine Learning Landscape of Top Taggers review that we’ll compare to later.
We’ve also provided two common classification metrics to track during training: accuracy and the Area Under the ROC Curve (ROC AUC). We’ll look at ROC AUC in more detail later, so for now let’s take a look at our network with the summary()
method:
learn.summary()
TabularModel (Input shape: 1024 x 0)
============================================================================
Layer (type) Output Shape Param # Trainable
============================================================================
1024 x 800
BatchNorm1d 1600 True
____________________________________________________________________________
1024 x 200
Linear 160000 True
ReLU
BatchNorm1d 400 True
Linear 40000 True
ReLU
BatchNorm1d 400 True
____________________________________________________________________________
1024 x 50
Linear 10000 True
ReLU
BatchNorm1d 100 True
Linear 2500 True
ReLU
BatchNorm1d 100 True
____________________________________________________________________________
1024 x 2
Linear 102 True
____________________________________________________________________________
Total params: 215,202
Total trainable params: 215,202
Total non-trainable params: 0
Optimizer used: <function Adam at 0x7faa1ad5e790>
Loss function: FlattenedLoss of CrossEntropyLoss()
Callbacks:
- TrainEvalCallback
- Recorder
- ProgressCallback
Here we can see that this particular network has around 215,000 parameters - although this sounds like a lot, it’s actually a very small model by modern standards (e.g. in natural language processing, some models have hundreds of billions of parameters!).
Find a good learning rate#
The learning rate is one of the most important hyperparameters involved in training neural networks, so it’s important to make sure you’ve picked a good one. We’ll see in the next lesson exactly how this parameter impacts training, but for now it is enough to know that:
If our learning rate is too low, it will take a long time to train the model and there is a good chance of overfitting.
If our learning rate is too high, the training process can diverge.
To handle these two extremes, fastai provides a learning rate finder that tracks the loss as we increase the learning rate. You can see this in action by using the lr_find()
method of any Learner
:
learn.lr_find()
SuggestedLRs(valley=0.0006918309954926372)
From this curve we can see that the loss hits a minimum around a learning rate of \(3 \times 10^{-1}\), so we should select a learning rate lower than this point. The lr_find()
method provides a handy heuristic to pick the learning rate 1-2 orders of magnitude less than the minimum, as indicated by the orange dot.
Train your model#
In the above learning rate plot, it appears a learning rate of around \(10^{-3}\) would be good, so let’s choose that and train our models for 3 epochs:
learn.fit_one_cycle(n_epoch=3, lr_max=1e-3)
epoch | train_loss | valid_loss | accuracy | roc_auc_score | time |
---|---|---|---|---|---|
0 | 0.512565 | 0.511615 | 0.732775 | 0.809289 | 00:20 |
1 | 0.419058 | 0.404574 | 0.810632 | 0.891700 | 00:20 |
2 | 0.381482 | 0.372323 | 0.830776 | 0.907655 | 00:20 |
Once the model is trained, we can view the results in various ways. A simple approach is to use the show_results()
method to compare the model errors:
learn.show_results()
E_0 | PX_0 | PY_0 | PZ_0 | E_1 | PX_1 | PY_1 | PZ_1 | E_2 | PX_2 | PY_2 | PZ_2 | E_3 | PX_3 | PY_3 | PZ_3 | E_4 | PX_4 | PY_4 | PZ_4 | E_5 | PX_5 | PY_5 | PZ_5 | E_6 | PX_6 | PY_6 | PZ_6 | E_7 | PX_7 | PY_7 | PZ_7 | E_8 | PX_8 | PY_8 | PZ_8 | E_9 | PX_9 | PY_9 | PZ_9 | E_10 | PX_10 | PY_10 | PZ_10 | E_11 | PX_11 | PY_11 | PZ_11 | E_12 | PX_12 | PY_12 | PZ_12 | E_13 | PX_13 | PY_13 | PZ_13 | E_14 | PX_14 | PY_14 | PZ_14 | E_15 | PX_15 | PY_15 | PZ_15 | E_16 | PX_16 | PY_16 | PZ_16 | E_17 | PX_17 | PY_17 | PZ_17 | E_18 | PX_18 | PY_18 | PZ_18 | E_19 | PX_19 | PY_19 | PZ_19 | E_20 | PX_20 | PY_20 | PZ_20 | E_21 | PX_21 | PY_21 | PZ_21 | E_22 | PX_22 | PY_22 | PZ_22 | E_23 | PX_23 | PY_23 | PZ_23 | E_24 | PX_24 | PY_24 | PZ_24 | E_25 | PX_25 | PY_25 | PZ_25 | E_26 | PX_26 | PY_26 | PZ_26 | E_27 | PX_27 | PY_27 | PZ_27 | E_28 | PX_28 | PY_28 | PZ_28 | E_29 | PX_29 | PY_29 | PZ_29 | E_30 | PX_30 | PY_30 | PZ_30 | E_31 | PX_31 | PY_31 | PZ_31 | E_32 | PX_32 | PY_32 | PZ_32 | E_33 | PX_33 | PY_33 | PZ_33 | E_34 | PX_34 | PY_34 | PZ_34 | E_35 | PX_35 | PY_35 | PZ_35 | E_36 | PX_36 | PY_36 | PZ_36 | E_37 | PX_37 | PY_37 | PZ_37 | E_38 | PX_38 | PY_38 | PZ_38 | E_39 | PX_39 | PY_39 | PZ_39 | E_40 | PX_40 | PY_40 | PZ_40 | E_41 | PX_41 | PY_41 | PZ_41 | E_42 | PX_42 | PY_42 | PZ_42 | E_43 | PX_43 | PY_43 | PZ_43 | E_44 | PX_44 | PY_44 | PZ_44 | E_45 | PX_45 | PY_45 | PZ_45 | E_46 | PX_46 | PY_46 | PZ_46 | E_47 | PX_47 | PY_47 | PZ_47 | E_48 | PX_48 | PY_48 | PZ_48 | E_49 | PX_49 | PY_49 | PZ_49 | E_50 | PX_50 | PY_50 | PZ_50 | E_51 | PX_51 | PY_51 | PZ_51 | E_52 | PX_52 | PY_52 | PZ_52 | E_53 | PX_53 | PY_53 | PZ_53 | E_54 | PX_54 | PY_54 | PZ_54 | E_55 | PX_55 | PY_55 | PZ_55 | E_56 | PX_56 | PY_56 | PZ_56 | E_57 | PX_57 | PY_57 | PZ_57 | E_58 | PX_58 | PY_58 | PZ_58 | E_59 | PX_59 | PY_59 | PZ_59 | E_60 | PX_60 | PY_60 | PZ_60 | E_61 | PX_61 | PY_61 | PZ_61 | E_62 | PX_62 | PY_62 | PZ_62 | E_63 | PX_63 | PY_63 | PZ_63 | E_64 | PX_64 | PY_64 | PZ_64 | E_65 | PX_65 | PY_65 | PZ_65 | E_66 | PX_66 | PY_66 | PZ_66 | E_67 | PX_67 | PY_67 | PZ_67 | E_68 | PX_68 | PY_68 | PZ_68 | E_69 | PX_69 | PY_69 | PZ_69 | E_70 | PX_70 | PY_70 | PZ_70 | E_71 | PX_71 | PY_71 | PZ_71 | E_72 | PX_72 | PY_72 | PZ_72 | E_73 | PX_73 | PY_73 | PZ_73 | E_74 | PX_74 | PY_74 | PZ_74 | E_75 | PX_75 | PY_75 | PZ_75 | E_76 | PX_76 | PY_76 | PZ_76 | E_77 | PX_77 | PY_77 | PZ_77 | E_78 | PX_78 | PY_78 | PZ_78 | E_79 | PX_79 | PY_79 | PZ_79 | E_80 | PX_80 | PY_80 | PZ_80 | E_81 | PX_81 | PY_81 | PZ_81 | E_82 | PX_82 | PY_82 | PZ_82 | E_83 | PX_83 | PY_83 | PZ_83 | E_84 | PX_84 | PY_84 | PZ_84 | E_85 | PX_85 | PY_85 | PZ_85 | E_86 | PX_86 | PY_86 | PZ_86 | E_87 | PX_87 | PY_87 | PZ_87 | E_88 | PX_88 | PY_88 | PZ_88 | E_89 | PX_89 | PY_89 | PZ_89 | E_90 | PX_90 | PY_90 | PZ_90 | E_91 | PX_91 | PY_91 | PZ_91 | E_92 | PX_92 | PY_92 | PZ_92 | E_93 | PX_93 | PY_93 | PZ_93 | E_94 | PX_94 | PY_94 | PZ_94 | E_95 | PX_95 | PY_95 | PZ_95 | E_96 | PX_96 | PY_96 | PZ_96 | E_97 | PX_97 | PY_97 | PZ_97 | E_98 | PX_98 | PY_98 | PZ_98 | E_99 | PX_99 | PY_99 | PZ_99 | E_100 | PX_100 | PY_100 | PZ_100 | E_101 | PX_101 | PY_101 | PZ_101 | E_102 | PX_102 | PY_102 | PZ_102 | E_103 | PX_103 | PY_103 | PZ_103 | E_104 | PX_104 | PY_104 | PZ_104 | E_105 | PX_105 | PY_105 | PZ_105 | E_106 | PX_106 | PY_106 | PZ_106 | E_107 | PX_107 | PY_107 | PZ_107 | E_108 | PX_108 | PY_108 | PZ_108 | E_109 | PX_109 | PY_109 | PZ_109 | E_110 | PX_110 | PY_110 | PZ_110 | E_111 | PX_111 | PY_111 | PZ_111 | E_112 | PX_112 | PY_112 | PZ_112 | E_113 | PX_113 | PY_113 | PZ_113 | E_114 | PX_114 | PY_114 | PZ_114 | E_115 | PX_115 | PY_115 | PZ_115 | E_116 | PX_116 | PY_116 | PZ_116 | E_117 | PX_117 | PY_117 | PZ_117 | E_118 | PX_118 | PY_118 | PZ_118 | E_119 | PX_119 | PY_119 | PZ_119 | E_120 | PX_120 | PY_120 | PZ_120 | E_121 | PX_121 | PY_121 | PZ_121 | E_122 | PX_122 | PY_122 | PZ_122 | E_123 | PX_123 | PY_123 | PZ_123 | E_124 | PX_124 | PY_124 | PZ_124 | E_125 | PX_125 | PY_125 | PZ_125 | E_126 | PX_126 | PY_126 | PZ_126 | E_127 | PX_127 | PY_127 | PZ_127 | E_128 | PX_128 | PY_128 | PZ_128 | E_129 | PX_129 | PY_129 | PZ_129 | E_130 | PX_130 | PY_130 | PZ_130 | E_131 | PX_131 | PY_131 | PZ_131 | E_132 | PX_132 | PY_132 | PZ_132 | E_133 | PX_133 | PY_133 | PZ_133 | E_134 | PX_134 | PY_134 | PZ_134 | E_135 | PX_135 | PY_135 | PZ_135 | E_136 | PX_136 | PY_136 | PZ_136 | E_137 | PX_137 | PY_137 | PZ_137 | E_138 | PX_138 | PY_138 | PZ_138 | E_139 | PX_139 | PY_139 | PZ_139 | E_140 | PX_140 | PY_140 | PZ_140 | E_141 | PX_141 | PY_141 | PZ_141 | E_142 | PX_142 | PY_142 | PZ_142 | E_143 | PX_143 | PY_143 | PZ_143 | E_144 | PX_144 | PY_144 | PZ_144 | E_145 | PX_145 | PY_145 | PZ_145 | E_146 | PX_146 | PY_146 | PZ_146 | E_147 | PX_147 | PY_147 | PZ_147 | E_148 | PX_148 | PY_148 | PZ_148 | E_149 | PX_149 | PY_149 | PZ_149 | E_150 | PX_150 | PY_150 | PZ_150 | E_151 | PX_151 | PY_151 | PZ_151 | E_152 | PX_152 | PY_152 | PZ_152 | E_153 | PX_153 | PY_153 | PZ_153 | E_154 | PX_154 | PY_154 | PZ_154 | E_155 | PX_155 | PY_155 | PZ_155 | E_156 | PX_156 | PY_156 | PZ_156 | E_157 | PX_157 | PY_157 | PZ_157 | E_158 | PX_158 | PY_158 | PZ_158 | E_159 | PX_159 | PY_159 | PZ_159 | E_160 | PX_160 | PY_160 | PZ_160 | E_161 | PX_161 | PY_161 | PZ_161 | E_162 | PX_162 | PY_162 | PZ_162 | E_163 | PX_163 | PY_163 | PZ_163 | E_164 | PX_164 | PY_164 | PZ_164 | E_165 | PX_165 | PY_165 | PZ_165 | E_166 | PX_166 | PY_166 | PZ_166 | E_167 | PX_167 | PY_167 | PZ_167 | E_168 | PX_168 | PY_168 | PZ_168 | E_169 | PX_169 | PY_169 | PZ_169 | E_170 | PX_170 | PY_170 | PZ_170 | E_171 | PX_171 | PY_171 | PZ_171 | E_172 | PX_172 | PY_172 | PZ_172 | E_173 | PX_173 | PY_173 | PZ_173 | E_174 | PX_174 | PY_174 | PZ_174 | E_175 | PX_175 | PY_175 | PZ_175 | E_176 | PX_176 | PY_176 | PZ_176 | E_177 | PX_177 | PY_177 | PZ_177 | E_178 | PX_178 | PY_178 | PZ_178 | E_179 | PX_179 | PY_179 | PZ_179 | E_180 | PX_180 | PY_180 | PZ_180 | E_181 | PX_181 | PY_181 | PZ_181 | E_182 | PX_182 | PY_182 | PZ_182 | E_183 | PX_183 | PY_183 | PZ_183 | E_184 | PX_184 | PY_184 | PZ_184 | E_185 | PX_185 | PY_185 | PZ_185 | E_186 | PX_186 | PY_186 | PZ_186 | E_187 | PX_187 | PY_187 | PZ_187 | E_188 | PX_188 | PY_188 | PZ_188 | E_189 | PX_189 | PY_189 | PZ_189 | E_190 | PX_190 | PY_190 | PZ_190 | E_191 | PX_191 | PY_191 | PZ_191 | E_192 | PX_192 | PY_192 | PZ_192 | E_193 | PX_193 | PY_193 | PZ_193 | E_194 | PX_194 | PY_194 | PZ_194 | E_195 | PX_195 | PY_195 | PZ_195 | E_196 | PX_196 | PY_196 | PZ_196 | E_197 | PX_197 | PY_197 | PZ_197 | E_198 | PX_198 | PY_198 | PZ_198 | E_199 | PX_199 | PY_199 | PZ_199 | is_signal_new | is_signal_new_pred | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 55.373371 | 15.447829 | -53.108967 | 2.648058 | 39.483627 | 9.879107 | -38.208023 | 1.227653 | 39.344952 | 28.682394 | -26.352501 | 5.557986 | 34.630009 | 25.825630 | -22.191050 | 6.311225 | 31.741671 | 22.453880 | -22.047646 | 4.154309 | 28.607065 | 20.475050 | -19.632759 | 3.700181 | 31.330889 | 12.412865 | -21.484344 | 19.130299 | 22.874287 | 16.306553 | -15.693566 | 3.322846 | 21.684135 | 11.369366 | -17.951180 | 4.323710 | 20.443676 | 5.001358 | -19.806828 | 0.787326 | 18.971832 | 14.148410 | -12.157228 | 3.457565 | 22.302622 | 7.657867 | -16.329651 | 13.118936 | 22.506207 | 8.257535 | -15.369576 | 14.216842 | 17.488396 | 12.562215 | -11.999881 | 2.009378 | 17.286680 | 12.460367 | -11.671321 | 2.710874 | 15.806683 | 9.301882 | -12.139855 | 3.993762 | 16.524759 | 6.189622 | -11.225109 | 10.428478 | 10.510235 | 7.613899 | -7.113340 | 1.376215 | 10.505521 | 6.357656 | -7.655622 | 3.367139 | 8.879970 | 2.345350 | -8.521793 | 0.855708 | 7.796289 | 2.116827 | -7.502737 | 0.100512 | 7.792163 | 5.807485 | -5.111705 | 0.928112 | 8.909110 | 3.027786 | -6.752189 | 4.961118 | 7.138719 | 1.478972 | -6.924917 | -0.905249 | 7.019392 | 1.748098 | -6.797865 | 0.071055 | 6.291604 | 4.547145 | -3.957447 | -1.801769 | 5.986259 | 4.363632 | -4.026358 | 0.763186 | 7.380098 | 2.547143 | -5.351652 | 4.397468 | 5.743817 | 0.075045 | -5.278041 | 2.264527 | 6.931075 | 2.999568 | -4.256332 | 4.574497 | 7.232418 | 1.939481 | -4.349987 | 5.442784 | 5.510406 | 2.592241 | -3.626578 | 3.239258 | 4.339673 | 2.618227 | -3.349735 | -0.870016 | 4.239345 | 3.116243 | -2.873728 | -0.052541 | 5.080171 | 1.750966 | -3.859296 | 2.801444 | 5.380709 | 2.247479 | -3.541767 | 3.369979 | 5.361376 | 1.817439 | -3.761746 | 3.360140 | 4.103991 | 2.657733 | -2.794918 | 1.402720 | 3.818110 | 2.906654 | -2.466961 | -0.208396 | 4.390255 | 1.492041 | -3.327362 | 2.444753 | 3.485384 | 2.404282 | -2.507123 | -0.285769 | 3.187455 | 1.371662 | -2.873592 | -0.144521 | 3.490748 | 1.988637 | -2.472357 | 1.455369 | 4.097678 | 2.209598 | -2.229547 | 2.633963 | 3.930950 | 2.172712 | -2.055131 | 2.551103 | 3.562002 | 1.982498 | -2.168933 | 2.013279 | 3.120360 | 1.434136 | -2.554029 | -1.075563 | 2.888219 | 1.857622 | -2.140393 | -0.556570 | 2.678831 | 2.034264 | -1.711286 | 0.330761 | 2.630311 | 1.963093 | -1.706802 | 0.389398 | 3.244133 | 1.065371 | -2.351692 | 1.964417 | 2.638533 | 1.724679 | -1.895686 | -0.627464 | 2.543895 | 2.038069 | -1.515647 | 0.143134 | 3.280566 | 1.412071 | -1.966430 | 2.213893 | 2.566380 | 1.855283 | -1.529425 | -0.897268 | 2.289888 | 1.568115 | -1.578431 | 0.541439 | 2.143133 | 0.785485 | -1.959918 | 0.367092 | 2.265625 | 0.370917 | -2.031101 | 0.932795 | 2.155324 | 1.487690 | -1.398882 | -0.689440 | 2.088751 | 0.885557 | -1.750641 | 0.716886 | 2.567099 | 0.351094 | -1.901725 | 1.688246 | 2.626564 | 1.599039 | -0.941216 | 1.859038 | 2.267673 | 0.917841 | -1.602557 | 1.315948 | 1.809489 | 0.863159 | -1.339359 | 0.857510 | 1.555773 | 0.946619 | -1.225913 | 0.146564 | 1.840218 | 0.865688 | -1.211108 | 1.081761 | 1.502715 | 0.671494 | -1.305816 | 0.319518 | 2.117384 | 0.982598 | -1.066445 | 1.542891 | 2.147986 | 0.576015 | -1.291921 | 1.616475 | 1.620426 | 0.445077 | -1.329756 | 0.812058 | 1.287042 | 1.104052 | -0.659054 | 0.056528 | 1.346352 | 1.007555 | -0.781745 | 0.431708 | 1.204614 | 0.038337 | -1.201698 | 0.074481 | 1.388158 | 0.423047 | -1.119640 | 0.703149 | 1.290550 | 0.594335 | -0.993044 | 0.571094 | 1.259902 | 0.842324 | -0.746376 | 0.566362 | 1.240312 | 0.823487 | -0.695624 | 0.613474 | 1.114801 | 0.616407 | -0.836268 | 0.404327 | 1.050791 | 0.398882 | -0.922332 | 0.307179 | 1.127198 | 0.645933 | -0.747799 | -0.542350 | 1.396213 | 0.701842 | -0.656147 | 1.013065 | 1.034949 | 0.493690 | -0.766056 | 0.490459 | 0.911330 | 0.421269 | -0.712346 | -0.381599 | 0.814269 | 0.523715 | -0.603436 | -0.156913 | 0.954917 | 0.557657 | -0.571621 | 0.523579 | 0.760974 | 0.312979 | -0.693473 | 0.014826 | 0.846925 | 0.272219 | -0.697219 | 0.396314 | 0.644899 | 0.546843 | -0.334867 | -0.068710 | 0.649957 | 0.325505 | -0.550379 | -0.116504 | 0.676266 | 0.024148 | -0.598012 | 0.314857 | 0.570777 | 0.153775 | -0.548854 | -0.029968 | 0.518796 | 0.181761 | -0.406142 | 0.266760 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 |
1 | 85.271927 | 18.985689 | 80.161728 | -22.021387 | 35.494274 | 14.089288 | 27.902519 | 16.816210 | 35.372967 | 5.981579 | 24.812439 | 24.491024 | 25.733261 | 9.897063 | 22.975033 | 6.032969 | 28.182434 | 10.784863 | 21.934576 | 14.028923 | 18.519686 | 4.554176 | 17.492123 | -4.032852 | 17.722200 | 8.807404 | 15.307701 | 1.476581 | 16.917294 | 6.332823 | 15.572810 | 1.891498 | 24.142254 | 4.088970 | 16.139261 | 17.482935 | 18.184538 | 7.623066 | 14.188622 | 8.440929 | 14.736913 | 7.184424 | 12.294654 | 3.795013 | 14.942549 | 4.855879 | 12.715952 | 6.164801 | 13.729703 | 6.076223 | 11.742292 | 3.701733 | 12.704572 | 6.494713 | 10.371592 | 3.413933 | 15.580447 | 2.845028 | 9.984985 | 11.617065 | 9.553916 | 2.127168 | 8.981367 | -2.467289 | 9.804935 | 3.186309 | 8.343896 | 4.045191 | 8.694020 | 3.851479 | 7.770153 | 0.613865 | 8.243057 | 5.284256 | 5.934836 | 2.191428 | 8.779967 | 3.985839 | 6.611471 | 4.182028 | 7.933362 | 4.407343 | 5.780066 | 3.178741 | 7.105115 | 3.368708 | 5.879133 | 2.137819 | 5.970509 | 2.737379 | 5.242725 | 0.817049 | 6.051137 | 2.366136 | 5.302313 | 1.703857 | 5.901711 | 3.073598 | 4.855549 | 1.344184 | 6.272639 | 4.037410 | 3.992417 | 2.665695 | 6.232912 | 5.105202 | 2.319947 | 2.721020 | 7.341536 | 1.614292 | 5.363025 | 4.746595 | 6.145093 | 4.572462 | 2.929341 | 2.876407 | 5.856678 | 2.805473 | 4.596078 | 2.303491 | 5.343754 | 2.587870 | 4.635347 | 0.610072 | 5.468257 | 2.527618 | 4.632632 | 1.432377 | 6.032536 | 4.560538 | 2.457248 | 3.091102 | 5.207212 | 1.688362 | 4.861693 | -0.792737 | 5.531978 | 2.484682 | 4.359250 | 2.329393 | 5.121120 | 1.059114 | 4.798028 | -1.443289 | 4.850181 | 2.497190 | 4.136650 | 0.420032 | 6.786995 | 1.429670 | 4.304793 | 5.048573 | 5.556354 | 1.293891 | 4.277099 | 3.302323 | 4.906525 | 3.403742 | 2.785759 | 2.174414 | 4.229742 | 3.379346 | 2.434534 | -0.737415 | 4.091139 | 1.765958 | 3.664821 | 0.433472 | 4.395818 | 2.131417 | 3.452122 | 1.692080 | 3.884586 | 1.596526 | 3.251563 | 1.403015 | 4.026021 | 3.060858 | 1.747410 | 1.945906 | 3.470460 | 0.785172 | 3.339807 | -0.522771 | 3.551084 | 2.793807 | 1.822081 | 1.218547 | 3.460228 | 2.306340 | 2.393177 | 0.962641 | 3.458021 | 1.377673 | 2.960962 | 1.136938 | 3.495999 | 2.029963 | 2.312546 | 1.659335 | 3.475843 | 2.760226 | 1.258267 | 1.696881 | 3.245294 | 1.344248 | 2.667978 | 1.267608 | 2.962028 | 1.531076 | 2.519693 | -0.283835 | 3.051412 | 1.687248 | 2.174260 | 1.317916 | 2.512844 | 1.686045 | 1.779321 | 0.552860 | 2.689137 | 1.730874 | 1.711585 | 1.142807 | 2.823017 | 0.768076 | 2.290710 | 1.460183 | 2.411201 | 1.448410 | 1.926455 | 0.069062 | 3.871706 | 0.444843 | 2.284927 | 3.093757 | 2.409937 | 1.518276 | 1.763376 | 0.627008 | 2.762771 | 0.450254 | 2.190216 | 1.622692 | 2.339598 | 1.109260 | 1.935902 | 0.703949 | 2.320295 | 1.870794 | 1.161824 | 0.730795 | 2.191975 | 1.253329 | 1.720387 | 0.523628 | 2.147218 | 1.241978 | 1.723932 | 0.309991 | 2.067152 | 0.668318 | 1.797967 | 0.770573 | 2.486211 | 0.976978 | 1.561115 | 1.670233 | 1.853210 | 0.693731 | 1.705928 | 0.207205 | 1.954812 | 1.041473 | 1.383678 | 0.906673 | 1.887233 | 0.418697 | 1.644984 | -0.824846 | 1.756695 | 0.891352 | 1.399602 | 0.576703 | 2.784866 | 0.735156 | 1.483188 | 2.239459 | 2.572018 | 0.816908 | 1.401982 | 1.995592 | 1.613443 | 0.533463 | 1.495458 | 0.286742 | 1.677924 | 0.851383 | 1.336842 | 0.550843 | 1.746369 | 0.290088 | 1.536734 | 0.777240 | 2.353512 | 0.480571 | 1.473505 | 1.771117 | 2.081337 | 0.122754 | 1.513445 | 1.423510 | 1.590024 | 0.158424 | 1.482136 | 0.553488 | 1.504820 | 0.578757 | 1.343526 | 0.352794 | 1.503309 | 0.523185 | 1.351987 | 0.397927 | 1.831516 | 0.319156 | 1.346600 | 1.199692 | 1.556591 | 0.420901 | 1.305272 | 0.736263 | 1.166046 | -0.175975 | 1.152045 | 0.038587 | 1.352714 | 1.022639 | 0.551004 | 0.693138 | 1.228763 | 0.139722 | 1.110641 | -0.506768 | 1.227743 | 0.433013 | 0.974023 | 0.609207 | 1.074988 | 0.600248 | 0.867498 | 0.206761 | 1.761592 | 0.317861 | 0.975899 | 1.431710 | 1.121050 | 0.744424 | 0.605544 | 0.579571 | 0.931303 | 0.605460 | 0.700810 | 0.098024 | 0.870360 | 0.526842 | 0.679842 | 0.133338 | 1.094996 | 0.182765 | 0.839526 | 0.67883 | 0.869425 | 0.694774 | 0.499537 | 0.153792 | 0.80607 | 0.43132 | 0.671326 | -0.114161 | 0.757981 | 0.123427 | 0.695199 | -0.27568 | 0.774677 | 0.211287 | 0.639215 | 0.383257 | 0.735012 | 0.439176 | 0.507381 | 0.299884 | 0.919752 | 0.23057 | 0.625046 | 0.634112 | 1.091753 | 0.43259 | 0.506562 | 0.864977 | 0.822304 | 0.41847 | 0.422452 | 0.56798 | 0.548454 | 0.200325 | 0.501501 | -0.095753 | 0.662222 | 0.247508 | 0.440059 | 0.428516 | 0.722328 | 0.219603 | 0.416881 | 0.547487 | 0.45947 | 0.192403 | 0.385645 | 0.159286 | 0.381374 | 0.307673 | 0.205482 | 0.092526 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
2 | 516.210022 | 65.679703 | -247.258301 | -448.355103 | 239.182953 | 31.903074 | -113.941299 | -207.865479 | 179.469437 | 23.711529 | -86.030853 | -155.710419 | 31.219574 | 4.289379 | -15.344496 | -26.847895 | 37.876450 | -1.978928 | -11.897355 | -35.904907 | 20.399145 | -2.294662 | -6.365724 | -19.244148 | 12.406221 | 1.862238 | -6.106205 | -10.637700 | 9.219143 | 3.883240 | -4.890146 | -6.782294 | 19.560913 | -0.260901 | -5.983164 | -18.621572 | 11.251606 | 2.552148 | -5.037094 | -9.732054 | 18.354359 | -0.930482 | -5.475431 | -17.493895 | 16.252151 | -2.212914 | -5.068512 | -15.282200 | 6.916037 | 2.132614 | -4.821438 | -4.476299 | 9.780379 | 0.747449 | -5.211164 | -8.242627 | 9.660797 | 1.918161 | -4.794651 | -8.164741 | 9.848786 | 1.837722 | -4.671026 | -8.473658 | 16.540770 | -0.054699 | -4.790403 | -15.831807 | 14.726268 | -0.474498 | -4.746349 | -13.932336 | 7.632535 | 1.056448 | -4.623791 | -5.979972 | 16.599749 | -1.347675 | -4.512690 | -15.917634 | 12.049094 | -0.836061 | -4.101630 | -11.298598 | 7.719193 | 1.126171 | -3.958953 | -6.530267 | 10.318196 | -0.681848 | -3.737458 | -9.593314 | 6.383173 | 0.875908 | -3.390751 | -5.336711 | 5.925990 | 0.664168 | -3.116205 | -4.996550 | 9.041269 | -0.083944 | -3.101111 | -8.492386 | 8.563301 | -0.485526 | -3.019691 | -7.998491 | 4.828800 | 0.646107 | -2.672212 | -3.969778 | 3.304960 | 1.389704 | -2.079199 | -2.160651 | 4.622041 | 0.501523 | -2.295092 | -3.980489 | 5.623734 | 0.022133 | -2.192067 | -5.178874 | 4.362431 | 1.123515 | -1.728674 | -3.844503 | 7.586563 | -0.431333 | -1.987274 | -7.308942 | 3.077971 | 0.304442 | -1.948014 | -2.363570 | 3.152456 | 0.365215 | -1.881816 | -2.502672 | 2.837118 | 0.741525 | -1.701359 | -2.145869 | 5.856131 | 0.142115 | -1.631506 | -5.622478 | 2.703051 | 0.351616 | -1.503992 | -2.218301 | 4.142230 | 0.702753 | -1.246833 | -3.887109 | 2.733151 | 0.492921 | -1.205528 | -2.402883 | 1.912597 | 0.737363 | -1.061550 | -1.409764 | 3.952762 | -0.013051 | -1.147835 | -3.782410 | 3.149440 | -0.272640 | -1.041096 | -2.959858 | 1.572127 | 0.540256 | -0.918551 | -1.155842 | 1.289259 | 0.397553 | -0.898793 | -0.834453 | 1.004981 | 0.386808 | -0.679457 | -0.631431 | 2.614485 | 0.011527 | -0.770739 | -2.498271 | 2.090822 | -0.224414 | -0.682523 | -1.963501 | 1.025700 | 0.101452 | -0.649154 | -0.787633 | 0.876280 | 0.130027 | -0.486805 | -0.716924 | 0.851218 | 0.168147 | -0.416703 | -0.722950 | 1.414109 | -0.082354 | -0.420374 | -1.347668 | 0.551654 | 0.105977 | -0.407282 | -0.356668 | 1.229190 | 0.026430 | -0.400792 | -1.161712 | 0.933148 | 0.246668 | -0.309570 | -0.845036 | 0.507530 | 0.109217 | -0.332749 | -0.367337 | 0.749032 | 0.160857 | -0.235663 | -0.692558 | 0.603806 | 0.142805 | -0.159186 | -0.564666 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
3 | 179.563461 | -78.816872 | -144.127274 | 72.513924 | 57.747158 | -21.012482 | -47.169498 | 25.850504 | 57.541145 | -21.817780 | -46.437847 | 26.047922 | 31.984177 | -10.522673 | -23.974773 | 18.370390 | 28.503929 | -19.214449 | -16.230444 | 13.410877 | 23.305548 | -8.522502 | -19.122160 | 10.240045 | 20.502831 | -13.593023 | -12.078649 | 9.471115 | 19.289295 | -10.553767 | -13.188070 | 9.315028 | 17.299089 | -7.465109 | -14.635800 | 5.415163 | 18.352409 | -12.133499 | -11.023665 | 8.250330 | 15.409149 | -5.652246 | -13.209612 | 5.567778 | 14.739727 | -9.908389 | -8.232552 | 7.162993 | 13.606773 | -6.493807 | -10.264329 | 6.133376 | 15.646438 | -4.733969 | -11.113035 | 9.944899 | 13.769272 | -4.598180 | -10.381672 | 7.789125 | 11.078214 | -4.109962 | -8.905683 | 5.150132 | 10.438019 | -6.905755 | -6.393700 | 4.514797 | 10.234579 | -4.340665 | -7.756525 | 5.073615 | 9.574831 | -4.906097 | -6.998511 | 4.316070 | 8.875442 | -5.893004 | -5.258232 | 4.049315 | 8.183035 | -3.070297 | -6.941494 | 3.057940 | 8.138783 | -5.618798 | -4.768335 | 3.454253 | 8.431035 | -4.407260 | -5.768741 | 4.287196 | 7.438922 | -2.728679 | -6.377074 | 2.687901 | 7.635469 | -2.623368 | -6.148635 | 3.689528 | 9.050841 | -4.024401 | -5.112267 | 6.291792 | 6.475564 | -2.130436 | -4.853968 | 3.719296 | 6.063044 | -3.251853 | -4.128994 | 3.022806 | 5.670615 | -3.004871 | -4.072957 | 2.556881 | 6.102602 | -2.382156 | -4.397341 | 3.497209 | 5.423337 | -1.995948 | -4.519047 | 2.237631 | 5.209931 | -2.486430 | -3.930134 | 2.348423 | 5.429140 | -1.997184 | -4.083933 | 2.967878 | 5.431569 | -2.630232 | -3.229809 | 3.485993 | 4.644033 | -1.483754 | -3.725301 | 2.342575 | 4.351503 | -3.004162 | -2.549451 | 1.846860 | 4.217671 | -3.204675 | -2.168622 | 1.678058 | 4.105029 | -2.240312 | -2.686709 | 2.147989 | 4.409565 | -1.903473 | -2.643459 | 2.972067 | 3.114978 | -2.337030 | -1.513010 | 1.397204 | 3.706148 | -2.089397 | -1.802283 | 2.474213 | 2.785452 | -0.510653 | -2.401492 | 1.315603 | 2.668029 | -1.756768 | -1.705230 | 1.060346 | 4.436053 | -1.182912 | -2.099723 | 3.724305 | 2.730992 | -1.515908 | -1.776266 | 1.416057 | 2.537111 | -1.800472 | -1.239602 | 1.287873 | 2.233770 | -0.767471 | -1.798794 | 1.079378 | 2.209532 | -0.555434 | -1.733758 | 1.252041 | 1.863158 | -1.251323 | -0.999087 | 0.952561 | 1.604812 | -0.760796 | -1.217320 | 0.717455 | 1.521268 | -0.278892 | -1.311569 | 0.718513 | 1.160954 | -0.706225 | -0.797743 | 0.461159 | 1.215907 | -0.677310 | -0.713421 | 0.714639 | 0.975926 | -0.487160 | -0.761194 | 0.368361 | 1.007666 | -0.732924 | -0.358831 | 0.591146 | 0.891673 | -0.404192 | -0.692181 | 0.390633 | 0.998600 | -0.336022 | -0.683391 | 0.645963 | 0.968041 | -0.356868 | -0.591964 | 0.677737 | 0.501999 | -0.081097 | -0.487034 | -0.090685 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 |
4 | 329.562469 | 95.270767 | -126.800941 | 288.888245 | 319.419220 | 100.912178 | -120.495155 | 278.076050 | 77.337204 | 22.194319 | -29.571247 | 67.926407 | 61.838978 | 18.147085 | -23.431585 | 54.274334 | 49.351467 | 13.173972 | -22.642370 | 41.825073 | 47.120506 | 12.578436 | -21.618811 | 39.934349 | 46.389317 | 14.740288 | -16.279430 | 40.861629 | 43.341885 | 12.493152 | -16.581955 | 38.045746 | 31.633617 | 10.231354 | -12.024124 | 27.412142 | 30.532423 | 8.062800 | -11.625650 | 27.056688 | 26.103477 | 8.533171 | -10.292779 | 22.419527 | 25.247374 | 7.628972 | -9.912628 | 21.930992 | 17.856659 | 4.219609 | -6.807502 | 15.959734 | 13.716174 | 4.209394 | -5.481440 | 11.847711 | 11.635141 | 3.570374 | -4.609353 | 10.068903 | 9.181920 | 4.273754 | -2.714597 | 7.659873 | 8.440472 | 2.724650 | -3.251005 | 7.297178 | 6.138549 | 2.320958 | -2.505951 | 5.100505 | 6.732611 | 2.486831 | -1.331028 | 6.113271 | 3.722566 | 2.305616 | -0.828641 | 2.802675 | 4.201150 | 1.409204 | -1.568503 | 3.633677 | 2.803007 | 1.142459 | -1.012736 | 2.350745 | 4.100997 | 0.869796 | -1.231139 | 3.813912 | 2.151438 | 0.791965 | -0.791666 | 1.837048 | 1.975119 | 0.610799 | -0.920475 | 1.637298 | 1.900072 | 0.872769 | -0.254539 | 1.668460 | 1.301327 | 0.735834 | -0.496105 | 0.951777 | 1.059441 | 0.427947 | -0.446137 | 0.860372 | 1.012077 | 0.260065 | -0.557012 | 0.803993 | 1.630392 | 0.172932 | -0.532861 | 1.531121 | 0.824098 | 0.486938 | -0.220189 | 0.627333 | 0.712525 | 0.349196 | -0.376336 | 0.494091 | 0.904629 | 0.301461 | -0.269676 | 0.809166 | 0.644888 | 0.158176 | -0.218105 | 0.585911 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5 | 611.084106 | -305.877930 | 129.185684 | 513.004456 | 284.789490 | -140.946121 | 61.773891 | 239.631439 | 76.014404 | -37.440628 | 16.435490 | 64.080139 | 22.579498 | -11.267144 | 5.153885 | 18.876511 | 18.358086 | -9.069336 | 3.679590 | 15.531487 | 11.038916 | -5.771944 | 2.414210 | 9.094719 | 5.687854 | -2.857658 | 0.943238 | 4.826570 | 4.331696 | -2.132928 | 0.182841 | 3.765737 | 5.723002 | -1.590581 | 0.922244 | 5.419619 | 3.527958 | -1.545158 | 0.410306 | 3.144937 | 2.790856 | -1.413644 | 0.731161 | 2.292573 | 2.203614 | -1.009327 | 0.244803 | 1.943514 | 1.776436 | -0.946788 | 0.292658 | 1.474336 | 1.433138 | -0.883230 | 0.212052 | 1.108524 | 2.893339 | -0.881270 | 0.169735 | 2.750629 | 1.782020 | -0.816223 | 0.197968 | 1.571682 | 1.645752 | -0.726600 | -0.050745 | 1.475797 | 1.530543 | -0.678641 | 0.133411 | 1.365361 | 0.820616 | -0.492704 | 0.282692 | 0.592233 | 1.151004 | -0.297730 | 0.427764 | 1.026248 | 1.248217 | -0.497593 | -0.094049 | 1.140878 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
6 | 102.676163 | -97.163437 | -14.328404 | 29.939236 | 64.570015 | -61.093929 | -9.346408 | 18.693928 | 65.386238 | -60.351425 | -8.609890 | 23.641819 | 56.462463 | -54.785923 | -5.263214 | 12.602011 | 47.432133 | -45.001816 | -7.120251 | 13.188850 | 40.683399 | -38.570587 | -5.872537 | 11.530916 | 28.003189 | -26.391380 | -4.377386 | 8.277205 | 26.152256 | -24.843985 | -3.721982 | 7.270751 | 23.080246 | -21.833197 | -3.181887 | 6.773834 | 22.892691 | -21.534258 | -3.309304 | 7.028485 | 21.047714 | -19.981674 | -2.704503 | 6.035285 | 13.292037 | -12.593484 | -1.933046 | 3.787579 | 12.791776 | -12.218965 | -1.924688 | 3.259145 | 7.018115 | -6.534798 | -2.008228 | 1.586625 | 6.743606 | -6.232697 | -1.848569 | 1.792343 | 6.210994 | -5.740381 | -1.045328 | 2.128794 | 6.112596 | -5.376745 | -2.126432 | 1.983113 | 4.986853 | -3.374813 | -3.165563 | 1.859717 | 4.302229 | -4.220151 | -0.616500 | 0.565178 | 3.806959 | -3.438175 | -0.578166 | 1.528924 | 3.572317 | -3.229210 | -0.452246 | 1.459153 | 3.641506 | -2.671299 | 1.595279 | 1.892039 | 2.801416 | -2.653493 | -0.783084 | 0.440098 | 2.662709 | -2.382332 | -0.915795 | 0.758835 | 2.815930 | -2.255222 | -1.117244 | 1.263014 | 2.460618 | -2.231441 | -0.676693 | 0.785749 | 2.745603 | -2.279052 | -0.092057 | 1.528328 | 2.000568 | -1.662871 | -0.776164 | 0.796682 | 1.834038 | -1.740878 | -0.446244 | 0.365928 | 1.715279 | -1.317732 | -1.063943 | 0.271645 | 1.531346 | -1.449036 | -0.133841 | 0.476866 | 1.474029 | -1.246142 | -0.586768 | 0.524973 | 1.532491 | -1.294766 | -0.469805 | 0.671858 | 1.328893 | -1.285204 | -0.337899 | 0.005790 | 1.271554 | -1.238967 | -0.213757 | -0.190049 | 1.742561 | -0.964922 | -0.765100 | 1.232910 | 1.388186 | -1.225337 | 0.026604 | 0.651846 | 1.618137 | -1.154190 | -0.382735 | 1.067580 | 1.032082 | -0.862739 | -0.565555 | -0.031960 | 1.025964 | -0.928927 | -0.315983 | -0.299751 | 1.010365 | -0.591851 | -0.631354 | 0.521482 | 0.823785 | -0.701112 | -0.424199 | -0.084371 | 0.544246 | -0.425272 | -0.337233 | 0.040271 | 0.427590 | -0.415362 | -0.080952 | 0.061274 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
7 | 257.630188 | 106.853798 | -69.073929 | 224.018692 | 83.139183 | 54.075981 | -27.262121 | 56.962166 | 111.417793 | 46.211254 | -29.872526 | 96.881767 | 41.762379 | 26.673393 | -13.681358 | 29.076571 | 34.663544 | 21.791115 | -12.034702 | 24.122076 | 25.538147 | 16.182859 | -8.959289 | 17.608044 | 30.153559 | 7.585900 | -16.008104 | 24.401472 | 24.515146 | 11.261580 | -12.848575 | 17.580767 | 22.468275 | 14.698792 | -7.485686 | 15.255603 | 19.120033 | 11.736723 | -6.992858 | 13.376284 | 24.139442 | 9.408215 | -6.032071 | 21.396549 | 18.365290 | 4.613016 | -9.457962 | 15.051607 | 14.258600 | 8.633021 | -5.624858 | 9.855942 | 14.425040 | 8.865430 | -5.083375 | 10.180630 | 20.804403 | 8.410170 | -5.317484 | 18.270649 | 13.994586 | 7.593967 | -6.303789 | 9.921811 | 21.007475 | 8.456771 | -4.788936 | 18.624262 | 13.029757 | 5.821420 | -6.856107 | 9.427588 | 10.091116 | 5.895158 | -4.701034 | 6.706565 | 9.571890 | 5.884108 | -4.098946 | 6.340110 | 9.571373 | 6.144860 | -3.171987 | 6.617430 | 8.580808 | 6.470941 | -1.388490 | 5.461618 | 10.252076 | 2.282099 | -5.927240 | 8.047665 | 8.047889 | 4.701519 | -3.749179 | 5.348634 | 8.326077 | 4.827573 | -3.402928 | 5.868406 | 8.132969 | 4.453572 | -3.825441 | 5.628222 | 8.798279 | 3.072728 | -4.789514 | 6.710336 | 12.012880 | 4.217518 | -3.521853 | 10.682620 | 7.761537 | 4.680856 | -2.098069 | 5.824873 | 9.441773 | 4.063155 | -2.331676 | 8.197631 | 7.229572 | 2.543451 | -3.838978 | 5.573134 | 5.715028 | 4.136883 | -1.597178 | 3.605103 | 6.003904 | 3.465700 | -2.197486 | 4.382560 | 7.316044 | 3.797707 | -0.928238 | 6.183874 | 5.193681 | 2.735659 | -2.342006 | 3.742393 | 5.353796 | 1.858556 | -3.058202 | 3.981997 | 4.304455 | 3.083871 | -1.632927 | 2.520243 | 6.899963 | 2.732437 | -1.535975 | 6.146874 | 3.176030 | 2.508638 | -1.098781 | 1.608285 | 3.084017 | 2.016692 | -1.410590 | 1.858588 | 3.045140 | 2.359873 | -0.078474 | 1.922945 | 3.249019 | 1.177708 | -1.724877 | 2.488761 | 3.297309 | 1.671539 | -1.190321 | 2.580956 | 2.947780 | 1.652419 | -1.175254 | 2.139555 | 3.344485 | 1.645264 | -1.121537 | 2.687162 | 2.092230 | 1.878650 | -0.561380 | 0.730036 | 3.207179 | 0.990327 | -1.383898 | 2.718470 | 3.152884 | 1.315663 | -0.959724 | 2.699748 | 2.404118 | 0.960115 | -1.258060 | 1.809764 | 2.967598 | 1.304544 | -0.536729 | 2.610885 | 1.521293 | 1.291479 | -0.466002 | 0.655176 | 1.381625 | 1.102953 | -0.681875 | 0.476894 | 2.242080 | 0.981484 | -0.568098 | 1.934135 | 1.653730 | 0.920067 | -0.644304 | 1.213743 | 1.700750 | 1.043000 | -0.157132 | 1.334170 | 2.208643 | 0.970911 | -0.399462 | 1.943159 | 2.415330 | 0.449469 | -0.907174 | 2.192905 | 1.785409 | 0.838798 | -0.551518 | 1.476460 | 1.050630 | 0.569733 | -0.767990 | 0.435223 | 1.919633 | 0.552084 | -0.779635 | 1.665041 | 1.684097 | 0.741616 | -0.561193 | 1.404012 | 1.794403 | 0.864213 | -0.256112 | 1.551587 | 1.520116 | 0.504923 | -0.647644 | 1.279204 | 0.914422 | 0.630762 | -0.426319 | 0.506516 | 0.949885 | 0.526892 | -0.370316 | 0.698234 | 1.031610 | 0.440354 | -0.415594 | 0.835217 | 1.149833 | 0.153560 | -0.499332 | 1.024306 | 1.124914 | 0.351487 | -0.290792 | 1.028265 | 0.820899 | 0.451697 | -0.020556 | 0.685145 | 0.526363 | 0.289947 | -0.326733 | 0.293657 | 1.276224 | 0.369967 | -0.214223 | 1.202489 | 0.516433 | 0.283546 | -0.275611 | 0.332181 | 0.377315 | 0.064522 | -0.181876 | 0.324229 | 0.167024 | 0.057483 | -0.122019 | 0.098510 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 |
8 | 142.923752 | 78.678352 | 99.938553 | 65.185890 | 72.991386 | 68.257805 | 24.202347 | 9.102827 | 38.014297 | 35.750080 | 12.087891 | 4.571796 | 35.611473 | 33.123123 | 11.181815 | 6.782530 | 29.437706 | 25.464855 | 7.476874 | 12.736403 | 26.011148 | 24.477785 | 8.453134 | 2.441799 | 25.178915 | 23.511496 | 8.387461 | 3.292090 | 26.343893 | 22.708706 | 7.349658 | 11.148897 | 14.659115 | 13.821280 | 4.732279 | 1.211350 | 12.022038 | 11.286951 | 3.723090 | 1.809071 | 11.740626 | 11.090772 | 3.692733 | 1.095822 | 11.710329 | 10.720157 | 4.432101 | 1.602043 | 11.045879 | 9.710128 | 2.566499 | 4.597603 | 10.035184 | 9.327897 | 3.396616 | 1.469095 | 9.884888 | 8.961467 | 2.712603 | 3.169369 | 8.882207 | 7.292553 | 1.885134 | 4.707286 | 6.543412 | 6.489433 | -0.837826 | -0.039319 | 6.999748 | 6.033854 | 1.952853 | 2.962336 | 6.257664 | 5.496066 | 2.890849 | 0.771110 | 7.793723 | 5.734364 | 1.738196 | 4.983760 | 4.510467 | 4.178370 | 1.598105 | 0.575843 | 4.782681 | 4.108604 | 1.113110 | 2.180458 | 4.182361 | 3.912849 | 1.477021 | -0.012807 | 4.109838 | 4.077982 | 0.468581 | -0.203135 | 3.711725 | 3.349799 | 1.546700 | 0.404313 | 4.168599 | 3.340050 | 1.566669 | 1.940832 | 4.268133 | 3.465314 | 1.210372 | 2.177971 | 4.612126 | 2.487145 | 2.594614 | 2.890294 | 3.607978 | 3.168864 | 1.666775 | 0.444598 | 3.494550 | 1.425179 | 3.127082 | 0.634120 | 3.491037 | 3.115516 | 0.857281 | 1.321350 | 3.215504 | 1.748195 | 2.689125 | -0.227790 | 3.137908 | 2.968556 | 1.016842 | 0.013167 | 3.484559 | 2.057550 | 2.275903 | 1.651939 | 2.793626 | 2.571566 | 1.040875 | 0.328598 | 2.581538 | 1.263143 | 2.250417 | 0.066577 | 3.051403 | 1.363279 | 2.085111 | 1.762057 | 2.360827 | 1.616907 | 1.685841 | 0.342134 | 2.474930 | 1.347824 | 1.682887 | 1.215131 | 1.996616 | 1.705726 | 1.037443 | 0.026195 | 1.940771 | 1.925673 | -0.095188 | -0.222073 | 1.953383 | 1.835132 | 0.535860 | -0.401062 | 2.335166 | 1.851506 | 0.128525 | 1.417182 | 1.739371 | 1.590491 | 0.703631 | 0.025517 | 1.747788 | 1.568626 | 0.640641 | 0.428663 | 1.702729 | 1.054443 | 1.319898 | 0.212849 | 1.675363 | 1.218332 | 1.108690 | 0.305474 | 1.422847 | 1.390380 | -0.218373 | -0.208926 | 1.494798 | 0.871027 | 0.889037 | 0.827856 | 1.229201 | 1.005900 | 0.556967 | 0.434615 | 1.132050 | 0.610936 | 0.893196 | 0.332407 | 1.326933 | 0.782299 | 0.727508 | 0.787079 | 1.065655 | 0.966104 | 0.292436 | 0.341678 | 1.136415 | 0.824682 | 0.569743 | 0.535474 | 0.948853 | 0.304282 | 0.863336 | 0.249770 | 1.092636 | 0.401995 | 0.816073 | 0.605208 | 0.766739 | 0.709495 | -0.179992 | 0.228271 | 0.945731 | 0.669617 | 0.267365 | 0.611993 | 0.752638 | 0.693571 | 0.178965 | -0.231072 | 0.839839 | 0.686661 | -0.165872 | 0.454216 | 0.596012 | 0.589230 | -0.042138 | -0.079139 | 0.426369 | 0.416082 | 0.085506 | -0.036812 | 0.523865 | 0.241910 | 0.313563 | 0.342919 | 0.521278 | 0.356159 | 0.144610 | 0.352093 | 0.358706 | 0.269504 | 0.236387 | 0.012588 | 0.299515 | 0.137145 | 0.265864 | 0.014722 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
Here we can see that model made a handful of errors, which is expected since our accuracy is only around 82%. However, evaluating our model’s predictions on the same data it was trained on is almost always a recipe for disaster! Why? The problem is that the model may memorise the structure of the data it sees and fail to provide good predictions when shown new data. Let’s see how we can evaluate our model on examples from the test set that it has never seen.
Evaluate your model#
The learners in fastai are equipped with predict()
and get_preds()
methods that allow one to evaluae the model on new data. To use them, we’ll need a new DataLoader
which we can create by simply passing in a DataFrame
of the test events:
test_dl = learn.dls.test_dl(test_items=test_df)
Now that we have a DataLoader
, it’s a simple matter to compute the predictions with the get_preds()
method:
preds, targs = learn.get_preds(dl=test_dl)
Let’s take a look at the first few values of preds
and targs
:
preds[:5], targs[:5]
(tensor([[0.9980, 0.0020],
[0.6680, 0.3320],
[0.8597, 0.1403],
[0.4682, 0.5318],
[0.9532, 0.0468]]),
tensor([[0],
[0],
[0],
[0],
[0]], dtype=torch.int8))
Here we can see that they are tensors. In PyTorch, a tensor is similar to the arrays that you may be familiar with in Numpy. Tensors have a rank that can be inspected by using the size()
method:
preds.size(), targs.size()
(torch.Size([404000, 2]), torch.Size([404000, 1]))
In this case, we see that preds
is a rank-2 tensor (i.e. a matrix), while targs
is rank-1 (a vector). Note that each dimension in preds
corresponds to the probabilities of the model for the two classes (signal vs background). We can visualise the distribution of the probabilities for each class by filtering the preds
tensor according to the ground truch labels and then plotting the result as a histogram:
signal_test = preds[:, 1][targs.flatten() == 1].numpy()
background_test = preds[:, 1][targs.flatten() == 0].numpy()
plt.hist(signal_test, histtype="step", bins=20, range=(0, 1), label="Signal")
plt.hist(background_test, histtype="step", bins=20, range=(0, 1), label="Background")
plt.xlabel("Probability")
plt.ylabel("Events/bin")
plt.yscale("log")
plt.xlim(0, 1)
plt.legend(loc="lower right", frameon=False)
plt.show()
We see that although the model assigns high (low) probabilities to the signal (background) events, a fair amount of the signal events overlap with background ones. To handle this, one usually defines a “cut” or threshold that only includes events above that value. For example, if define the cut at 0, then all the events are counted and the signal efficiency \(\epsilon_S\) and background efficiency \(\epsilon_B\) are both 1. As we increase the cut, we reject more and more background events and the result is a curve with \(\epsilon_{B,S}\) ranging from 0 to 1.
This curve is equivalent to the Reciever Operating Characteristic (ROC) curve which plots the true positive rate
against the false positive rate FPR, where the FPR is the ratio of negative instances that are incorrectly classified as positive. In general there is a tradeoff between these two quantities: the higher the TPR, the more false positives (FPR) the classifier produces.
To visualise the ROC curve for our model’s predictions, we can use the handy roc_curve()
function from scikit-learn:
# fpr = epsilon_B, tpr = epsilon_S
fpr, tpr, thresholds = roc_curve(y_true=targs, y_score=preds[:, 1])
plt.plot(fpr, tpr)
plt.plot([0, 1], [0, 1], ls="--", color="k")
plt.xlabel(r"$\epsilon_B$")
plt.ylabel(r"$\epsilon_S$")
plt.tight_layout()
A perfect classifier would have a ROC curve with all signal and background events correctly identified, i.e. an Area Under the Curve (AUC) of 1. Let’s compute this area along with the accuracy on the test set:
acc_test = accuracy_score(targs, preds.argmax(dim=-1))
auc_test = auc(fpr, tpr)
print(f"Accuracy: {acc_test:.4f}")
print(f"AUC: {auc_test:.4f}")
Accuracy: 0.8314
AUC: 0.9077
Since the AUC is dominated by values at large \(\epsilon_B\), it is common to also report the background rejection at a fixed signal efficiency (often 30%). We can do that by defining an interpolating function across the tpr
and fpr
values as follows:
background_eff = interp1d(tpr, fpr)
background_eff_at_30 = background_eff(0.3)
print(f"Backround rejection at signal efficiency 0.3: {1/background_eff_at_30:0.3f}")
Backround rejection at signal efficiency 0.3: 42.233
Comparing these results again the The Machine Learning Landscape of Top Taggers review, shows that our baseline model falls short of the models in the review, which get a typical accuracy of 93% and an AUC of 98%.
Let’s see if we can train a better model by choosing a clever representation of the input data! Before doing that, let’s collect this evaluation logic in a function that we can reuse later:
def compute_metrics(learn, test_df):
test_dl = learn.dls.test_dl(test_items=test_df)
preds, targs = learn.get_preds(dl=test_dl)
fpr, tpr, _ = roc_curve(y_true=targs, y_score=preds[:, 1])
acc_test = accuracy_score(targs, preds.argmax(dim=-1))
auc_test = auc(fpr, tpr)
background_eff = interp1d(tpr, fpr)
background_eff_at_30 = background_eff(0.3)
print(f"Accuracy: {acc_test:.4f}")
print(f"AUC: {auc_test:.4f}")
print(
f"Backround rejection at signal efficiency 0.3: {1/background_eff_at_30:0.3f}"
)
return fpr, tpr
fpr_baseline, tpr_baseline = compute_metrics(learn, test_df)
Accuracy: 0.8314
AUC: 0.9077
Backround rejection at signal efficiency 0.3: 42.233
Jet representations#
In any machine learning problem, how we represent the data often has a large impact on the performance of the models we train. For jet tagging, the most common approaches one finds in the literature include:
Jets as images. A jet image is a pixelated grayscale image, where the pixel intensity represents the energy (or transverse momentum) of all particles that deposited energy in a particular location in the \(\eta-\phi\) plane. Typically, convolutional neural networks (CNNs) are used to process the images and we’ll ecplore these architectures in a future lesson.
Jets as sequences. Here the idea is to order the particles in a jet (usually by \(p_T\)) and use sequence-based architectures like recurrent neural networks (RNNs).
Jets as graphs. This approach treats each jet as a generic graph of nodes and edges. Graph neural networks (which we’ll also encounter later in the course) excel on this tpe of data.
Jets as sets. A generalisation of the previous representations, this approach simply treats each jets as an unordered collection or point cloud of 4-vectors.
Theory-inspired representations. Instead of representing the jets in formats to match specific neural network architectures, these approaches use results on IR safety from QCD to represent the jets as a simplified set of features. Fully-connected neural networks are then trained on these features.
You can find more details about each representation in a nice review article from 2017.
In this lesson and the next, we’ll use one of the theory-inspired representations called \(N\)-subjettiness. Let’s take a look.
Representing jets with \(N\)-subjettiness observables#
\(N\)-subjettiness observables quantify how much of the radiation in a jet is aligned along different subjet axes. Although originally used for analytic approaches to distinguish different decays and event topologies, these observable can also be used as inputs for machine learning models and provide strong discriminating power.
To be precise, an \(N\)-subjettiness observable \(\tau_N^{(\beta)}\) measures the radiation about \(N\) axes in the jet according to an angular exponent \(\beta>0\):
Here \(p_{T,J}\) is the transverse momentum of the jet, \(p_{T,i}\) is the transverse momentum of particle \(i\) in the jet, and \(R_{K,i}\) is the distance in the \(\eta-\phi\) plane of particle \(i\) to axis \(K\).
To measure substructure in a jet, one thus needs to measure a suitable number of \(N\)-subjettiness observables. In practice this is done by specifying the corrdinates of \(M\)-body phase space in terms of \(3M - 4\) \(N\)-subjettiness observables:
To see how we can use this basis as features for a neural network, we have computed \(N\)-subjettiness observables up through 6-body phase space using the pyjet library. You can download these features via the load_dataset()
function as follows:
nsubjet_ds = load_dataset("dl4phys/top_tagging_nsubjettiness")
Downloading and preparing dataset parquet/dl4phys--top_tagging_nsubjettiness to /home/lewis/.cache/huggingface/datasets/parquet/dl4phys--top_tagging_nsubjettiness-d7eca4f13187c4c4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901...
Dataset parquet downloaded and prepared to /home/lewis/.cache/huggingface/datasets/parquet/dl4phys--top_tagging_nsubjettiness-d7eca4f13187c4c4/0.0.0/0b6d5799bb726b24ad7fc7be720c170d8e497f575d02d47537de9a5bac074901. Subsequent calls will reuse this data.
As before, we’ll convert our Dataset
object to a pandas DataFrame
:
nsubjet_ds.set_format("pandas")
train_df, test_df = nsubjet_ds["train"][:], nsubjet_ds["test"][:]
train_df.head()
pT | mass | tau_1_0.5 | tau_1_1 | tau_1_2 | tau_2_0.5 | tau_2_1 | tau_2_2 | tau_3_0.5 | tau_3_1 | ... | tau_4_0.5 | tau_4_1 | tau_4_2 | tau_5_0.5 | tau_5_1 | tau_5_2 | tau_6_0.5 | tau_6_1 | tau_6_2 | label | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 543.633944 | 25.846792 | 0.165122 | 0.032661 | 0.002262 | 0.048830 | 0.003711 | 0.000044 | 0.030994 | 0.001630 | ... | 0.024336 | 0.001115 | 0.000008 | 0.004252 | 0.000234 | 7.706005e-07 | 0.000000 | 0.000000 | 0.000000e+00 | 0 |
1 | 452.411860 | 13.388679 | 0.162938 | 0.027598 | 0.000876 | 0.095902 | 0.015461 | 0.000506 | 0.079750 | 0.009733 | ... | 0.056854 | 0.005454 | 0.000072 | 0.044211 | 0.004430 | 6.175314e-05 | 0.037458 | 0.003396 | 3.670517e-05 | 0 |
2 | 429.495258 | 32.021091 | 0.244436 | 0.065901 | 0.005557 | 0.155202 | 0.038807 | 0.002762 | 0.123285 | 0.025339 | ... | 0.078205 | 0.012678 | 0.000567 | 0.052374 | 0.005935 | 9.395772e-05 | 0.037572 | 0.002932 | 2.237277e-05 | 0 |
3 | 512.675443 | 6.684734 | 0.102580 | 0.011369 | 0.000170 | 0.086306 | 0.007760 | 0.000071 | 0.068169 | 0.005386 | ... | 0.044705 | 0.002376 | 0.000008 | 0.027895 | 0.001364 | 4.400042e-06 | 0.009012 | 0.000379 | 6.731099e-07 | 0 |
4 | 527.956859 | 133.985415 | 0.407009 | 0.191839 | 0.065169 | 0.291460 | 0.105479 | 0.029753 | 0.209341 | 0.049187 | ... | 0.143768 | 0.033249 | 0.003689 | 0.135407 | 0.029054 | 2.593460e-03 | 0.110805 | 0.023179 | 2.202088e-03 | 0 |
5 rows × 21 columns
Following Section 3.2.2 of The Machine Learning Landscape of Top Taggers revie, we’ve also included the jet mass and jet \(p_T\) as input variables to allow the network to learn physical scales.
Let’s now train a model using these features. As before, we need to first define our DataLoaders
object:
features = list(train_df.drop(columns=["label"]).columns)
splits = RandomSplitter(valid_pct=0.20, seed=42)(range_of(train_df))
dls = TabularDataLoaders.from_df(
df=train_df,
cont_names=features,
y_names="label",
y_block=CategoryBlock,
splits=splits,
bs=1024,
)
And just like before it’s a good idea to sanity check your data is formatted correctly with the show_batch()
method:
dls.show_batch()
pT | mass | tau_1_0.5 | tau_1_1 | tau_1_2 | tau_2_0.5 | tau_2_1 | tau_2_2 | tau_3_0.5 | tau_3_1 | tau_3_2 | tau_4_0.5 | tau_4_1 | tau_4_2 | tau_5_0.5 | tau_5_1 | tau_5_2 | tau_6_0.5 | tau_6_1 | tau_6_2 | label | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 461.643372 | 58.081078 | 0.267102 | 0.088350 | 0.015706 | 0.182025 | 0.042736 | 0.005997 | 0.141589 | 0.029279 | 0.003416 | 0.120514 | 0.020182 | 0.001241 | 0.087524 | 0.013450 | 8.641806e-04 | 0.071813 | 0.010891 | 7.935878e-04 | 0 |
1 | 513.609070 | 129.866760 | 0.431575 | 0.202836 | 0.063762 | 0.327400 | 0.133254 | 0.040518 | 0.130512 | 0.023113 | 0.001422 | 0.114296 | 0.017393 | 0.000718 | 0.095355 | 0.013060 | 4.953301e-04 | 0.082081 | 0.009201 | 2.063908e-04 | 1 |
2 | 538.835754 | 21.680426 | 0.198053 | 0.039486 | 0.001619 | 0.038596 | 0.003683 | 0.000069 | 0.027622 | 0.002028 | 0.000024 | 0.018646 | 0.000869 | 0.000002 | 0.008453 | 0.000373 | 9.324909e-07 | 0.000000 | 0.000000 | 0.000000e+00 | 0 |
3 | 569.943970 | 14.177874 | 0.124071 | 0.018201 | 0.000619 | 0.091646 | 0.008896 | 0.000096 | 0.039875 | 0.002515 | 0.000014 | 0.008931 | 0.000650 | 0.000005 | 0.000000 | 0.000000 | 0.000000e+00 | 0.000000 | 0.000000 | 0.000000e+00 | 0 |
4 | 462.787750 | 167.859375 | 0.618895 | 0.366184 | 0.132532 | 0.274511 | 0.074367 | 0.006216 | 0.217250 | 0.049036 | 0.003042 | 0.185648 | 0.036743 | 0.001925 | 0.159761 | 0.027603 | 9.593506e-04 | 0.136480 | 0.022875 | 7.589663e-04 | 0 |
5 | 481.187836 | 21.275795 | 0.197569 | 0.041092 | 0.001955 | 0.117185 | 0.018937 | 0.000665 | 0.099367 | 0.012753 | 0.000281 | 0.085475 | 0.009725 | 0.000197 | 0.062330 | 0.005595 | 6.916394e-05 | 0.052907 | 0.004203 | 3.618403e-05 | 0 |
6 | 574.911987 | 42.508812 | 0.180569 | 0.037991 | 0.005424 | 0.108725 | 0.020727 | 0.004305 | 0.041011 | 0.003381 | 0.000071 | 0.028611 | 0.002046 | 0.000036 | 0.015887 | 0.001213 | 2.921311e-05 | 0.011662 | 0.000650 | 1.678485e-05 | 0 |
7 | 463.576508 | 53.591480 | 0.288984 | 0.092856 | 0.013347 | 0.224898 | 0.052918 | 0.003495 | 0.173352 | 0.032209 | 0.001432 | 0.133511 | 0.024035 | 0.001166 | 0.094518 | 0.015667 | 6.733207e-04 | 0.088208 | 0.012934 | 3.997425e-04 | 0 |
8 | 519.291260 | 17.618988 | 0.151518 | 0.026514 | 0.001151 | 0.085697 | 0.009568 | 0.000241 | 0.058985 | 0.004627 | 0.000063 | 0.039815 | 0.002514 | 0.000013 | 0.028490 | 0.001495 | 5.074164e-06 | 0.017248 | 0.000635 | 8.944363e-07 | 0 |
9 | 478.084625 | 124.346436 | 0.507225 | 0.254765 | 0.067330 | 0.182893 | 0.043455 | 0.006483 | 0.126383 | 0.019826 | 0.001121 | 0.089138 | 0.014123 | 0.000801 | 0.044779 | 0.005901 | 1.272047e-04 | 0.029706 | 0.003584 | 5.757449e-05 | 1 |
This looks good, so the last step is to create a Learner
and find a good learning rate:
learn = tabular_learner(
dls, layers=[200, 200, 50, 50], metrics=[accuracy, RocAucBinary()]
)
learn.lr_find()
SuggestedLRs(valley=0.002511886414140463)
This curve is similar to what we found before so let’s pick a learning rate of \(10^{-3}\) and train for 3 epochs:
learn.fit_one_cycle(n_epoch=3, lr_max=1e-3)
epoch | train_loss | valid_loss | accuracy | roc_auc_score | time |
---|---|---|---|---|---|
0 | 0.234615 | 0.228308 | 0.903832 | 0.966693 | 00:08 |
1 | 0.225498 | 0.227929 | 0.903348 | 0.967744 | 00:08 |
2 | 0.222219 | 0.224911 | 0.904133 | 0.968275 | 00:08 |
We can already see that training on the \(N\)-subjettiness features has produced a better model than our baseline, which achieved around 83% and \(91%\) accuracy and AUC score respectively. Let’s wrap up by computing these metrics on the test set with our compute_metrics()
function:
test_df = nsubjet_ds["test"].to_pandas()
fpr_nsubjet, tpr_nsubjet = compute_metrics(learn, test_df)
Accuracy: 0.9037
AUC: 0.9677
Backround rejection at signal efficiency 0.3: 373.915
This is much better and now just a 1-2% the classifiers reported in the review paper! We can also compare both models by plotting the background rejection rate against the signal efficiency:
fig, ax = plt.subplots()
plt.plot(tpr_baseline, 1 / (fpr_baseline + 1e-6), label="Baseline")
plt.plot(tpr_nsubjet, 1 / (fpr_nsubjet + 1e-6), label="6-body N-subjettiness")
plt.xlabel("Signal befficiency $\epsilon_{S}$")
plt.ylabel("Background rejection $1/\epsilon_{B}$")
plt.xlim(0, 1)
plt.yscale("log")
plt.legend()
plt.show()
Saving and sharing the model#
We’ve seen in this lecture how to load and prepare datasets for deep neural nets, and how to train the models with fastai. But what happens if you want to save your model for future use, or to simply reproduce the results from your paper in PRL 🙃?
One way to do this is by use the save()
method of the Learner
, which will store your model in a format called pickle. This is great if you’re doing quick experimentation, but at some point you might want to share the model with a colleague or the wider research community.
In the same way we were able to download a dataset from the Hugging Face Hub, it is also possible to share fastai models on the platform! To do so, you’ll first need to:
Create a Hugging Face account (it’s free): https://huggingface.co/join
[Optional] Join the Deep Learning for Particle Physicists organisation to share your models with the rest of the class.
Once you’re created an account, you can log into the Hub with the following helper function:
notebook_login()
This will display a widget in which you can enter a Hugging Face token - you can find details on how to create tokens in the Hub documentation. Once you’re logged in, pushing our model to the Hub is simple via the push_to_hub_fastai()
function:
user_or_org = "dl4phys" # This can also be your Hub username, e.g. lewtun
model_id = "lewtun-top-tagging-nsubs" # Change this to something different
repo_id = f"{user_or_org}/{model_id}"
push_to_hub_fastai(
learner=learn,
repo_id=repo_id,
commit_message="Add new Learner",
)
This will push the model’s weights to the Hub, as well as a pyproject.toml
file that defines the environment in which the Learner
was created. Now that we’ve pushed our model to the Hub, we can now download it on any machine where fastai is installed! This is really handy when you need to quickly reproduce the results from your paper, e.g. here is how we use the from_pretrained_fastai()
function to download the model and re-compute our scores on the test set:
learner = from_pretrained_fastai(repo_id)
_, _ = compute_metrics(learner, test_df)
Accuracy: 0.9037
AUC: 0.9677
Backround rejection at signal efficiency 0.3: 373.915
Exercises#
Try changing the network architecture by adjusting the
layers
argument intabular_learner()
on the \(N\)-subjettiness features. What happens if you keep the number of nodes fixed and increase the number of layers? Similarly, what happens if you have just a single layer, but increase the number of nodes on that layer?Push one of your new models to the
dl4phys
organisation on the Hugging Face Hub.Train a model on the \(N\)-subjettiness features without including the jet mass and \(p_T\). Does this have a positive or negative impact on performance?
Train a model using 2-body and 4-body \(N\)-subjettiness features to see if the performance is saturated with a smaller number of features.